
An Interactive Web Gallery for Goal-based Caustics

Jad-Nicolas Khoury∗

Supervisor: N. Thanikachalam
Professor: Dr. Mark Pauly

Figure 1: Rendering with the caustic lightmap on the client side

Abstract

Any product or technology, if destined to be distributed, needs good
visibility on the market, in particular to the potential buyers.
For a long time now, web technologies and web-design APIs al-
lowed companies of all sizes to display their ideas, products and
technologies to virtually any person with an internet connection, in
a more intuitive, aesthetic, detailed and simple form, all the while
being easier to implement. But for some products, images and text
alone don’t make justice to the advantages and appeal of the mer-
chandise.
Video streams can help, but implementing a web application offer-
ing interactivity to the potential buyers is sometime worth the time
and effort. For this reason, Rayform wanted to develop an online
WebGallery to showcase some of their technologies.

1 Introduction

The main goal of this project is to develop an interactive web-
gallery displaying the real-world effect of Rayform products. These
products are either reflective or refractive objects which, when in
the right light conditions and position, project as a caustic pattern a
pre-defined image.
By the nature of these objects, this implies the implementation of
an extremely efficient ray tracing simulation engine which should
be able to run in real time. As an additional constraint, the origi-
nal object meshes should not be accessible by the user, to avoid the
possibility of someone reverse-engineering the technology. This
implied deporting part of the rendering process to a server that is
not accessible to the user.

2 Implementation

The rendering process is distributed as follows:
- The GPU server should access the real caustic objects mesh, run
the ray-tracing engine, and stream the caustic pattern obtained to
the client side.
- The client side should render the environment, the light, the
helpers, and all necessary interface, as well as a low resolution
mesh representing the caustic object without the surface modifica-
tion that encapsulate the caustic technology. Receiving the texture

∗e-mail:jad-nicolas.khoury@epfl.ch

stream from the GPU server, the client side should unwrap it and
superpose the texture to the ”screen” on which the caustic pattern
is projected.

As this application is supposed to render in real-time, two
pipelines have been explored:
First, a synchronous pipeline, based on the assumption that it could
be possible to wait for the caustic pattern to arrive on the client
side before rendering. The advantage of this implementation is that
the caustic pattern shown in the client side correspond exactly as
the one resulting from the current scene setup (i.e. object rotation,
position ...). The limit being that the whole round-trip time could
be too long to get a smooth rendering when displacing or rotating
the object or the light.
Second, an asynchronous implementation that should result in
a smoother experience. The server side continuously render the
caustic pattern, taking the parameters update into account, and
streaming it directly on some public link. The client side then
continuously read this stream and use it directly as a texture.
While being easier to implement and resulting in a smoother
experience, this pipeline could induce a delay between applying a
transformation to some object of the scene and the impact visibility
of this transformation on the caustic pattern. This is currently the
pipeline being implemented.

2.1 Server Side

2.1.1 Algorithm Description

This section will describe the general caustics simulation algo-
rithm, running on the server side, without going into computational
details.
Considering that 30 frames per seconds - all rendering included -
is a good objective, this leaves approximately 33ms for the whole
loop to run: the client side computations, the transmission of the
parameters to the GPU server, the computations of the caustic
pattern, the transmission of the resulting texture, the blending of
the said texture and finally the full rendering display. For this
reason, the Ray-Tracing engine should be extremely efficient.
Since it has been specifically designed to compute caustic patterns
projected on a screen, it was possible to develop shaders restricted
in their applications, but very cost-effective, thanks in particular
to OpenGL Geometry Shaders (see Fig. 2). More concretely,
rendering the projected caustic pattern is a problem equivalent

Vertex Shader
(-Compute r_light)
-Refract r_light
-Intersect with screen
-Intersect with virtual plane

Geometry Shader
-Takes 3 vertices
-Compute screen_area
-Compute plane_area
-Intensity = | screen area/plane_area |
-gl_Position = P * V * screenPos

C++ Program
-Load mesh
-Pre-process mesh
-Upload mesh and
parameters to GPU

-vPos

-vPos
-screenPos
-planePos

Fragment Shader
-Color = (vec3(intensity) , alpha)

-intensity

Figure 2: Overview of the Caustic Simulation Pipeline

to determining where the mesh focuses light on the screen and
where it disperses it. One can think of the refractive surface as an
assembly of many converging and diverging triangular lenses.
The first step to design such Ray Engine has been to discretize
the rays traced. The algorithm traces exactly one ray per vertex
of the refractive mesh. Even though that could seem a drastic
compromise, one can notice that in our application, all the rays
intersecting the refractive surface in the same triangle will be
refracted as parallel rays, and therefore will result in the same ray
convergence/divergence (as the triangle is flat by definition).

d

ScreenPosi

PlanePosi

VPosi

light_rayi

out_rayi

Figure 3: Visualisation of the caustics simulation algorithm

The algorithm designed to simulate the converging/diverging of the
light rays, has been inspired by [Wallace 2016] and was optimized
using Geometry Shaders.
As illustrated on Fig. 3, the Vertex Shader computes for each ver-
tex of the refractive mesh the refracted out-ray. Then, it intersects
this resulting ray with a plane representing the screen on which the
caustic pattern is displayed (here represented in green), and then
on a virtual plane, parallel to the screen, and placed behind it with
regard to the light (here in blue). These planes are stored as pairs
(point on plane , plane normal). For each vertex, the Vertex
Shader passes the following geometry to the Geometry Shader: the
vertex actual position, the point where the out-ray intersect with the
screen, and the point where it intersect the virtual plane. The Ge-
ometry Shader access the 3 points of each triangle of the mesh, and
then use the three passed screen-positions to compute the projected

area of the triangle on the screen; and repeats the same with the
virtual plane. This algorithm has the advantage of treating each ray
and each triangle exactly once. The diverging/converging of the ray
by the given triangle is then easily (and roughly) approximated by
the ratio of these areas, i.e.:

Intensity = |Areascreen/Areaplane| (1)

This value is then passed to the Fragment Shader where it is used
to give a monochrome colour to the triangle on the screen. At first,
the virtual plane was supposed to be placed as close as possible
to the mesh. Intuitively, comparing area on this plane to the area
on the screen would be perfect to deduce the diverging/converging
of the light. But this idea is complex to implement first because
the refractive surface isn’t flat (and the plane should not intersect
the mesh), but also because it should be displaced whenever the
mesh rotates, translates etc ... Placing the virtual plane close to the
screen and behind it allows us to leave it at a fixed position, while
never taking the risk that the object could intersect it.
Recall that, for now, the screen is only a pair
(point on screen , screen normal), and the mesh is at its
original position (see section 2.1.5). There is therefore nothing
to render on the screen! The first approached solution was to
render the screen as a grid and displace all the vertices to match
the positions of the projected points. But this approach had many
problems: first, we would need a correspondance point-on-screen
to point-on-mesh, which is virtually impossible. Then, we would
need to access each point of the mesh while rendering the grid of
the screen, and so pass two objects to the shaders when rendering.
But the shaders are applied in the same fashion to the all points
passed to them, and this would add further complications. The
trick found to answer this problem was to actually never render
the screen itself, but rather render the mesh, and then ”cheat” by
assigning to the vertex position the computed projected position on
the screen. To render the caustic pattern and take into account its
position on the screen, a simulated camera is placed in front of the
screen, with orthographic projection and adapted parameters.
This algorithm is summarised in Fig. 2.

2.1.2 Refraction Algorithm

Until now, the refraction of the light ray by the caustic surface has
been evoked as a simple operation, but it requires two steps in real-
ity. As the caustic object is not just a surface but a glass solid with
a flat side and a ”caustic” side, the incoming light-ray has to be re-
fracted twice. A first time as it passes from the air medium (n1) to
the glass medium (n2), and a second time when it comes out of the
object (n2 to n1). In the figures discussed, the surface geometry as
well as the refraction angles are exaggerated and not to scale, and
the vectors are not normalized, in an effort to make them as clear
and explicit as possible.
We distinguish two cases in our application:
The simplest one is with directional light, pictured in Fig. 4. The
light source is considered to emit parallel light rays, giving uni-
form light rays across all the mesh vertices. This incoming light
ray is passed directly to the vertex shader which first compute the
refraction of this ray by the flat side, giving rinside. rinside is then
refracted again at the vertex position, using the vertex normal, re-
sulting in the final out-going ray routside.
In the case of Point Light (or Spotlight), light rays are not parallel

anymore, and therefore change for each vertex. As seen on Fig. 5
in red, the light ray is computed as vertex pos − light pos. This
ray is then refracted on the flat surface, and then refracted again
using the vertex normal. But as the figure shows, there is a prob-
lem: the ray refracted by the flat surface, shown in purple, does not
actually hit the caustic surface at the exact vertex position, but is
used nonetheless to compute the outgoing ray. To have the exact

Directional
Light

rinside routside

rlight

n1 n2
n1

Figure 4: Representation of the details of the refraction computa-
tions with directional light

rinside

routside

rlight

n1 n2
n1

Point Light

Figure 5: Representation of the details of the refraction computa-
tions with point light

inside-ray, we would need to compute the intersection point of the
light ray on the flat surface. As we will see section 3.3, this was
not feasible at the moment, and since the distance from the mesh
to the light is very large compared to the thickness of the refractive
material, and even more large compared to the size of one triangle,
we consider this error acceptable.
When Rotating the mesh, we also apply the adapted transformation
to the ”object normal”, representing the normal of the flat side used
in the first refraction computation. When the object normal points
toward the screen then the refraction algorithm takes this fact into
account by first refracting on the caustic surface and then on the flat
surface. Fig. 6 shows the impact of rotating the mesh on the caustic
pattern simulated.

2.1.3 Reflection Algorithm

The ray-tracing algorithm is easily modified to obtain the reflection
pattern of a reflective mesh. The refraction computation at each
vertex is simply replaced by a simple reflection of the light vector
using the vertex normal.

2.1.4 Post Processing

The obtained image shows the result of the caustic pattern, but does
not really show the contrast seen in real life. In particular, the Ray-

Figure 6: Caustics with post processing, when the mesh is rotated
by π/16.0. Light mode = directional.

Tracer projects triangles to the screen with an intensity given by the
aforementioned formula, and an alpha designating the transparency.
Then, when two projected triangles overlap, the local value of the
FrameBuffer can exceed 1. When using default FrameBuffers, val-
ues exceeding 1 are clamped to 1 before being stored, leading to
loss of information in the high luminance regions.
This is a standard problem when rendering light patterns and can be
partially fixed by artificially manipulating the contrast and adding
some effects. A natural first step to answer this issue is to store
the values of the RayTracer-computed caustic pattern in a float-
ing point FrameBuffer. These non-clamped value, called High Dy-
namic Range values, are used in post-processing algorithms. Fig. 8
shows the comparison with and without processing.
Fig. 7 shows the post-processing pipeline implemented. A first
FrameBuffer is created to store the original HDR image rendered
by our RayTracer. This FrameBuffer is then passed to the post-
processing class. The main challenge of implementing the pre-
sented post-processing pipeline has been to efficiently manage all
these FrameBuffers which all require a different set of shaders,
some even requiring two passes. In order to optimise performance,
all these shaders and their corresponding shader programs are in-
stantiated and used in a single class called PostProcessing.
At each rendering loop, this class binds a High Clamp F.B. and pass
it the HDR image. A first shader program is used to clamp all val-
ues below 1, keeping therefore only the high luminance regions.
This High Clamp F.B. is passed by the same class to the Blur shader
program, that applies a two-pass gaussian filter and stores the result
in the Blurred F.B. The last shader program, called LDR, takes in
the blurred high-clamped values as well as the original HDR im-
age. It superposes the blurred image to the HDR one to give the
impression of ”blooming” from high-values regions, and then ap-
ply a standard gamma-exposure HDR algorithm to convert the re-
sulting superposition into a LDR image that can be displayed by
OpenGL without loss of information. Fig 9 shows the result of
adding blooming to the HDR image before applying the HDR func-
tion that converts it to a LDR image.
As an additional optimisation step, using FrameBuffers for the post-
processing makes it possible to render and compute the caustic pat-
tern only when necessary. In particular, we check at each frame if
some parameter has changed, and only render if it is the case. If no

Figure 7: Post Processing Pipeline

Figure 8: Caustic comparison with (left) and without (right) post-processing. Here, α = 0.6 , Exposure = 5.2 , γ = 0.05

parameters have changed, we just display the FrameBuffer contain-
ing the result of the previous rendering + post-processing.

2.1.5 Mesh Pre-Processing

A few steps have been added after the loading of the mesh,
such that the server rendering setup is compatible with the setup
displayed on the client side.
First, we assume that all the meshes are more or less of a rectangu-
lar shape. Some of the input mesh are centred on zero, some have
vertex position stating at zero... So the first preprocessing step
added is to compute position of the four ”corners” of the mesh, and
deduce the ”center” of the mesh. We then add to the MVP matrix
computation an initial translation in order to center this mesh on
zero.
As these rectangles don’t all have the same area, we also use these
results to compute its area and rescale the mesh to have it of size
approximately 100x100.
As each mesh has its own focus distance (i.e. the distance
from the screen such that the caustic pattern is the exact desired
image), when loading a mesh we also load a set of corresponding
parameters, including this distance, that we multiply by the scale
found in the previous pre-computing step.
As a result, when loading a mesh, the program also automatically
scales it, center it, and translate it to its focus position relative to
the screen.

2.2 Client Side

The first approach to render the environment on the client side was
to hardcode it using WebGL. But it quickly became obvious that
using javascript to write OOP rendering code was complicated and
unstable. After 2 weeks of trying to implement my own WebGL
API, it seemed that it would be faster to use an existing API even if
that meant learning yet another tool. The client side rendering has
therefore been implemented using the ThreeJS API.
The first innovative feature implemented was to modify the ThreeJS
control class to allow the program to manage the controls of the
scene objects in a state machine. This way, the user can only ac-
cess to one set of parameters at a time, and the rendering program
is always in a pre-defined controlled state: No controls, Light trans-
lation, Object translation, or Object rotation. The control class
has also been modified to offer setter functions to display or not,
the control helpers, in function of the said control activation state.
Fig. 10 shows the result on the client side. The rendering loop then
detects if some parameter has changed and if that’s the case, send
to the GPU server the new set of parameters.
The next challenge was using the incoming texture as an additive
lightmap, i.e. as a light map that is superposed to the scene lightning
done by ThreeJS. To do so, the solution found was to add a virtual
plane just in front of the rendered box representing the screen, and
tweak its parameters such that it acts like a transparent texture, su-
perposing itself with additive blending. The only constraint of this
approach seems to be that the resulting displayed caustic patterns
does not appear in the refractive texture of the box representing the
caustic mesh (as seen in Fig. 1).
Regarding the hosting of the client side, I used my DigitalOcean

Figure 9: Caustics comparison with (left) and without (right) bloom effect. The mesh is purposely off-focus to display the triangles overlap.

credits, generously proposed by the Github Student Pack. It runs
on Ubuntu 16.04 and the virtual host is setup using nginx.

2.3 Linking the two sides

As of this day, this part is not functional yet. Both sides are prepared
to be linked, from parameter change detection in the client side to
parameters update function in the GPU server side. But the last
features still remain to be implemented, and more problematically,
some are barely documented. More precisely:

1. How to wrap the OpenGL FrameBuffer normally destined to
the screen in a video stream

2. How to get this said stream accessible from a public link (that
will be used as texture source in the client side)

3. How to launch an AWS instance from the client side

4. How to make the OpenGL code listen to some parameter
changes that will be thrown by the client side. (This step
seems to be the most problematic)

Once this is done, the whole WebGallery will be up and running.

3 Future Work

3.1 WebGallery Homepage

A simple feature that could be implemented would be a homepage
for the webgallery, proposing the different meshes that are imple-
mented in the openGL side. When launching the rendering with a
particular mesh, the scene will come loaded with appropriates pa-
rameters.

3.2 Client Side aesthetics

There is no wondering if the client side could be made more aes-
thetically pleasant. This could be achieved using physical lightning,
ambiant occlusion, some GUI menus, a better looking environment
etc ... And, as mentioned before, fixing the displayed object refrac-
tion.

3.3 Physically correct refraction with Pointlight

To resume the problem, when refracting the ray in the object with
point light, we use as rinside the result of refracting the vector
vpos − lightpos on the flat surface, but this ray does not intersect

the second face of the object exactly in vpos. One could there-
fore look to compute the exact rinside. This would mean look-
ing for intersectpos such that the result of refracting the light
ray intesectpos − lightpos on the flat surface, give the vector
vpos − intesectpos.
The refracted out-going ray is computed as follow:

k = 1− eta2
[
1− (n · I)2

]
(2)

rout =

{
0 if k < 0

I ∗ eta− n
[
eta(n · I) +

√
k
]

otherwise
(3)

Where I is the incidence vector, n is the normal of the surface,
eta = n1/n2, and rout is the resulting refracted ray.
Noting l = lightpos , p = intersectionpos , v = vpos , we can
use:

• I = p− l

• rout = v − p

• n · I = n · (p− l) = n · p− n · l

And we get the equation system:
k = 1− eta2

[
1− (n · l)2 − (n · p)2 + 2(n · l)(n · p)

]
n
[
eta(n · p) +

√
k
]
− p(1 + eta) = eta [n(n · l)− l]− v

(4)
Under condition that p ∈ object plane
Since we have all parameters in this equation except p ∈ IR3, this
computation seems expensive and hard to implement. Nevertheless,
it could be possible to find an optimized and/or approximation of
this computation. If possible, we would get a function that, given
a light origin, a plane and a destination, find the path of the light
ray from the source to the destination while taking into account the
unknown refraction happening at the plane.
Another step toward making the refraction more physically realistic
would be to use the Fresnel term to blend reflection and refraction
when the object rotates.

3.4 Synchronous implementation

As of the writing of this report, the asynchronous implementation
of the parallel algorithm is in progress, as it seems easier and more
efficient. But implementing a synchronous pipeline would provide
a more realistic feeling since applying a transformation to some ob-
ject of the scene would impact instantly the caustic pattern display.

Figure 10: The three control modes of the client side. Top image:
Object translation, Middle image: Object rotation, Bottom image:
light controls

3.5 Genericity

The ray-tracing program could be made even more generic. First,
some computations could be modified such that we can give it any
mesh, screen parameters, and light position and automatically use
those parameters to initialize the scene at optimized position, as
well as taking into account the screen orientation. As shown in
this report, a great amount of work has already been done in this
direction, but debugging passes forced to hard-code some of the
values to ensure stability.
The algorithm could also be adapted to project the refracted rays
onto any kind of surface: a room populated with objects, a sphere,
a bottle of perfume etc ...

3.6 Multipass refraction and colors

By the discretisation of the refraction algorithm (Fig. 3), multipass
refraction is not possible. As before, when refracting the ray a first
time, it is very unlikely that the resulting refracted ray intersect the

following caustic surface in a vertex, and therefore the current algo-
rithm cannot compute the second refraction. It is possible nonethe-
less, that by solving the problem exposed in section 3.3, we could
as well find a way to implement multipass refraction, i.e. simulate
the caustic pattern done by multiple caustic surface.
Some of the caustic objects developed by RayForm happen to also
project colors in their caustic pattern. If the input 3D objects contain
information about some coloration of the mesh triangles, it could
be possible to adapt the algorithm to take these colors into account
when rendering the caustic pattern.

3.7 Local HDR

For now, the HDR algorithm implemented is a classic gamma-
exposure global HDR function. A local histogram-based HDR
could be implemented instead in order to get an even more realistic
feeling.

4 Conclusion

Working on the WebGallery has been extremely exciting and in-
teresting. Beginning a project of this scale with nothing provided
but the meshes and some global objectives, while being very chal-
lenging, has allowed me to implement features on my own and in
my own style. Some of the presented algorithm have taken days
of pen-and-paper designs and tests, and a lot of trials and errors.
Unfortunately, it also meant spending an immense amount of time
debugging, and trying out implementations that never worked, and
so were deleted. As of this day, the client side and the OpenGL part
are functional and almost ready to link, but I miss just a few week
to make it work as it is supposed to do. Since the presentation will
take place a week after the due date of this report, I hope I will be
able to show a functioning and linked WebGallery, and if it is not
the case, I will continue to work on this project at least until both
sides are linked.
Nevertheless, if all the people that allowed me to work on this
project agree, I would love to continue working on this as an Op-
tional Project for the Spring 2017 semester.

Acknowledgements

Thanks to Niranjan Thanikachalam who supervised me during this
project, helped me design some of the algorithm and was the inter-
mediate between the school, Rayform, and me.
I also would like to thank Dr. Pauly, who created this project for
me, and to Yuliy Schwartzburg, CTO of rayform, who provided me
some guideline as well as allowing me to work in pair with Ray-
form.

References

WALLACE, E., 2016. Rendering realtime caustics in webgl. https:
//goo.gl/yfM8OF.

https://goo.gl/yfM8OF
https://goo.gl/yfM8OF

