
An Interactive Web Gallery for Goal-based Caustics, Part II

Jad-Nicolas Khoury∗

Supervisor: N. Thanikachalam
Professor: Dr. Mark Pauly

Figure 1: Running WebGallery, in rotation mode, with lighting computed on server

Abstract

This project follows the work done during last semester in the con-
text of a Semester Project, with the LGG lab of the EPFL and in
collaboration with the Rayform company, see [Khoury 2016] for
the first report. The goal was to develop an interactive web-gallery
displaying the real-world effect of Rayform products. These prod-
ucts are either reflective or refractive objects which, when in the
right light conditions and position, project a pre-defined image as
a caustic pattern. During the previous semester, an OpenGL/C++
Ray Tracing Engine was developed to render caustics in real time,
and a Three.js program has been written to display the scene, and
to allow interaction with the caustic object and the light source.
What remained to be done was to distribute the OpenGL program
on an AWS G2 instance, and implement everything needed to allow
communication between the browser program and the Ray Tracing
Engine.

Keywords: Distributed rendering, caustics, AWS

1 Introduction

As of the writing of this report, no available documentation or pa-
per treat of partially distributing the rendering pipeline. As a result,
a novel and complete system architecture had to be designed and
developed for this project during this semester. A major part of the
work accomplished has been to make all of the needed libraries and
package run smoothly on an AWS G2 instance.
Most of the used technologies are fairly recent (G2 instances,
Socket.io C++ client, etc ...), and the available ressources are ex-
tremely limited if not nonexistent in some cases, and the final im-

∗e-mail:jad-nicolas.khoury@epfl.ch

plementation is the result of endless trial and errors. Nevertheless,
the installations and implementations have been tested and yield
working instances from empty Ubuntu images, and can be used as
reference for anyone trying to run OpenGL or a socket.io C++ client
on Amazon EC2 G2 instances. Detailed notes on implementation
and installations are presented at the end of this report.

2 Overview

The global architecture of the system, depicted on fig.2, is com-
posed of three parts:

• A Virtual Private Server (VPS, currently Digital Ocean) that
hosts the HomePage,

• A Render Server, concretely implemented as an Amazon Web
Services (AWS) G2 instance, in charge of serving the front-
end application, hosting the Node.js server, and running the
Ray Tracing Engine developed previously,

• The Front End Application that runs on the users browser and
that encapsulates both the Three.js program and the socket.io
client.

This architecture has been designed with this usage scenario in
mind:
First, the user opens the homepage of the WebGallery, where he
can find concise information about the project, and choose one of
the existing demo meshes to launch the simulation with. As of the
writing of this report, three meshes are available: a caustic mesh
for the Turing portrait, a reflective mesh for the Turing portrait,
and a refractive mesh for the Einstein picture and signature. When
choosing a mesh, the homepage automatically launches the AWS
instance, and notifies which mesh was asked. At launch, the AWS

instance runs both its Node server and the Ray Tracing Engine, and
the users browser downloads and runs the Front End Application.
He can now interact with the position and rotation of the object or
the light, and the Render Server automatically computes the new
lightmap and transmits it to the Three.js program which then up-
dates the displayed lightmap.

3 Render Server

Amazon Web Services Elastic Cloud 2 (AWS EC2) is a platform
that offers on demand cloud computing by proposing a virtual clus-
ter of computers, available with different hardware configuration to
suit different computing needs. The user selects a hardware con-
figuration that will correspond to the available ressources on the
instance once its launched. The configuration used in this project
is the G2.2 instance, enabling access to NVidia GRID GPUs on the
cloud. More specifically, it offers:

• 1 Intel Xeon E5-2670 CPU

• 1 NVIDIA GRID GPU with 1,536 CUDA cores and 4 GB of
VRAM

• 15GB of memory

At termination, all the content stored on the instance is deleted.
To palliate this constraint, a system of AMIs (Amazon Machine
Images) is available. It allows the user to create an image of the
current state of any given instance, which will then be available
when launching another instance. For example, one could create
an AMI with everything prepared to run an OpenGL program, and
then launch multiple AWS instances with this AMI to run different
rendering programs.

3.1 AWS Instance

The first difficulty encountered when trying to implement the Ren-
der Server has been to prepare an Ubuntu image on a G2 instance
to run OpenGL without any display attached.
Even if some AMIs and tutorials aimed at running OpenGL on
AWS instances are available, many of them are outdated, and the
NVidia AMIs that are supposed to be used in application like ours
are not maintained anymore. For this reason, the AMI created for
this project has been developed from scratch, with an empty Ubuntu
AMI as starting point. Preparing a Linux instance to run headless
OpenGL is more complex than one could expect, and needs some
extra precautions and scripts to allow OpenGL rendering at boot
time. Section 7.1 details all the installation and commands neces-
sary to obtain an OpenGL ready AWS instance.

3.2 The OpenGL program

The OpenGL program itself did not change a lot from what was
detailed in the previous report. The only part modified has been
the implementation of the lighting of the screen that allows the use
of the transmitted texture directly, and not to superpose it to the
lighting done by Three.js. Figure 3 shows the lighting computed on
the Render Server in the directional light and spotilght cases.

3.3 Socket.io C++ client

From the developers description, socket.io is a library that en-
ables real-time bidirectional event-based communication. More
concretely, this package allows to send objects and events from a
client to a server, or vice-versa. In this project, the socket.io library
is used communicate between the Render Server and the Front End

Application. This entails transmitting events and sending parame-
ters from one party to the other.
Originally, socket.io is a javascript library, but the developers re-
cently made available a C++ client, that offers the same function-
alities as the javascript client, but much less intuitively. The use of
this package in a C++ program can be problematic, but the working
solution is detailed in section 7.2.
In our Ray Tracing Engine, the use of this library implied the ad-
dition of a new class, called SocketHander, that takes the place of
the actual socet.io client in a javascript application. In particular,
this class is in charge of treating the incoming packets and relaying
their content, should it be event or parameters, and also to wrap the
scene parameters in a special data structure (required by the C++
client) and send them through the socket at some key events.

4 Front End

4.1 Node.js and Socket.io server

From the developper description, “Node.js is a JavaScript runtime
[that] uses an event-driven, non-blocking I/O model.”
In this project we use one Node server to host the homepage on the
VPS, and another one to host the Front End Application on AWS
and encapsulate the socket.io server. For the C++ client to send
packets to the Front End Application like detailed before, it actually
needs to connect to the socket.io server, and sent the packets to it.
The server is then in charge of maintaining the connection to the
different clients, and to treat the incoming packets. As a result, if
the javascript client wants to send a position to the C++ client, it
actually sends it to the socket.io server, which in turn relays it to
the C++ client. Connection and disconnection events are also the
responsibilities of the socket.io server.

4.2 Three.js

Three.js is a high-level javascript library that relies on WebGL and
that greatly simplifies the implementation of real-time rendering on
browser. Since the last report, the Three.js scene did not change a
lot appart from a few optimisation concerning parameter checks and
other similar functions. The Three.js program itself is also hosted
on AWS, but is served by the Node.js server and run by the users
browser.

4.3 Socket.io Javascript client

The Front End Application running in the browser also needs
a socket.io client to be able to communicate with the C++
socket.io client implemented in the Ray Tracing Engine, through
the socket.io server running on the AWS instance. Thankfully, in-
stalling and running a socket.io client in a javascript application is
natively supported and requires almost no prior installation and no
scripting.

4.4 HomePage

The homepage has been developed in HTML using a Bootstrap
template and fig. 7 shows a part of it. It is hosted on a DigitalOcean
droplet and served, as previously mentioned, using a Node server.
The Node server is also in charge of launching the AWS instance
using the AWS SDK, and redirecting the users browser toward the
AWS instance IP address.

Figure 2: System Architecture

Figure 3: On-server rendering of the screen lighting
Top: Directional, bottom: Spotlight

5 Synchronous pipeline implementation

The implementation of the Three.js program and the Ray Tracing
Engine implied some constraints that had to be respected in order
to achieve a stable implementation:

• The initial parameters of the scene have to correspond to the
parameters computed by the C++ program during the prepro-
cessing step detailed in the previous report (allowing the im-
plementation to be agnostic to the coordinate system as long
as the mesh has the caustic surface along on the X-Y plane).

• When interacting with the simulation, the new parameters
should be sent to the Ray Tracing Engine, which should in
turn update its parameters, recompute the new lightmap and
transfer the new image.

• The browser connection should be persistant, i.e. if the
browser disconnect and reconnect, the simulation should pick
up the scene as it was left.

For these reasons, implementing some kind of handshakes between
the three parties was required. In this implementation, the NodeJS
/ socket.io server orchestrates the handshakes.

5.1 Initialisation Handshake

The first handshake happens when the two clients connect to the
Node server. This handshake has to be agnostic to the order of
connection, so the browser connecting before or after the C++ client
should have no effect on the execution. For this reason, the Node
server on the AWS instance has to maintain information about what
is currently connected, and inform the other parties. To do so, the
Initialisation Handshake detailed on fig. 4 has been implemented.
At the end of this handshake, the three parties are synchronised and
the simulation can begin.

C++ Client Node Server JS Client

Connect Connect
Notify browser

ready

Send initial
parameters

Relay init
parameters

Update
Parameters

Notify
initialization OKRelay

notification

Preprocess mesh
(asynchronous)

On browser
ready

notification

Figure 4: Initialization Handshake

5.2 Parameter Exchange

During the simulation, the javascript client has to send to the C++
client the parameters that are updated by the user (e.g. by trans-
lating the mesh). Then, the Ray Tracing Engine has to update
the lightmap, sends the path of the image to the Three.js program,
which in turn loads the image and updates the texture, as pictured
in fig. 5. This is possible because the Three.js program and the Ray
Tracing Engine (and therefore its socket.io client) are hosted on the
same AWS instance. Hence, updating the texture with the new im-
age breaks down to reading an image file on the server that hosts
the Front End Application.

C++ Client Node Server JS Client

Some parameters
are updated in

the scene

Send new
parametersRelay new

parametersUnwrap and apply
new parameters

Update and
store Lightmap

Send new
image path Relay new

image path
Load new image

as texture

Figure 5: Parameter Exchange

5.3 Disconnection handling

If the users connection is unstable and disconnects his browser from
the server, the socket.io pipe is broken and without particular at-
tention, the simulation behaviour becomes unpredictable. For this
reason, a special handshake implementation has been necessary to
be able to reset the scene at reconnection exactly like it was before
disconnection. The implementation is schematized in fig. 6

C++ Client Node Server JS Client

Disconnect
Notify browser
disconnection

Relay
parameters

Update
Parameters

Notify
initialization OK

Relay
notification

Reconnect
Notify browser

connection

Remember
browser not ready,

not initialized

Send all previous
parameters

Figure 6: Disconnection Handling

6 Conclusion, Future Work

This project has been extremely slowed down by the lack of proper
documentation on how to run OpenGL on Amazon G2 instance
with Linux AMIs. Tutorials are available, some even written by
NVidia, but none of them worked as they were written. At the time
of the writing of this report, the Nvidia Capture SDK doesnt work
at all on Linux instances. The use of the socket.io C++ client as
built and static libraries was also problematic, even when running
everything as described in the official documentation. All of this
combined implied that the instance setup presented in this report is
the result of months of trial and errors, but have been successfully
tested again on an empty Ubuntu image, and can be used as refer-
ence when aiming at running OpenGL programs and/or socket.io
C++ client on similar instances.
Distributing part of the rendering pipeline is an idea that we believe
will become more exploited in the future, but for now technologies
are too young and not integrated well enough to allow easy imple-
mentation. Hopefully, in the future, Amazon and NVidia will pro-
pose instances that let the developper upload an OpenGL program,
and that will natively be able to run it and live stream the frame-
buffer to a client. Implementing the asynchrone pipeline described
in the previous report ([Khoury 2016]) would then have been a mat-
ter of minutes, but it is not the case yet.
For these reasons, this part of the project has been more about net-
works and server than rendering and computer graphics, but the
necessary has been done to have a working case of the usage sce-
nario we aimed at.
This project could be improved by implementing a better HDR al-
gorithm on the Ray Tracing Engine, and by making the NVidia Cap-
ture SDK work with our project.

7 Implementation Details

This section will detail all the installations and commands neces-
sary to run the libraries used in this project. First, we detail how
to install the packages necessary to run Opengl. Next, we list the
commands necessary to run headless OpenGL applications on an
AWS G2 instance from an Ubuntu image. We then do the same for
the socket.io C++ client and the Node / Socket.io server. All these
commands and scripts are available at [Khoury 2017], easing the
implementation of a similar instance for the interested reader.

7.1 Running OpenGL on a raw Ubuntu AMI

This sequence of commands has to be executed in this exact order
for headless OpenGL rendering to work. Also note that because of
the pdf formatting from Latex, it is possible that some tabs and/or
spaces have been affected and that some command might not work
by copy-pasting this PDF (in particular the sed command on the
xorg.conf file). Please refer to [Khoury 2017] if interested in run-
ning similar libraries.

Driver installation
At the time of this writing, G2 instance have a some trouble running
NVidia Drivers past the 367 version. As Ubuntu added the NVidia
driver to the default APT ppa, it can simply be installed by running:

sudo apt -get update
sudo apt -get upgrade
sudo apt -get install nvidia -367
sudo reboot now

After rebooting the instance and connecting to it again through
SSH, we can check if the driver has been well installed and is run-
ning with:

nvidia -smi

Disable automatic updates
The APT automatic updates must be turned off to avoid the NVidia
driver to be automatically updated (as newer versions seem to be
incompatible with the G2 instances). This can be done by editing
the configuration file located at

/etc/apt/apt.conf.d/10 periodic.

Simply change the 1 by a 0 in the line:

APT:: Periodic ::Update -Package -Lists "1";

Install OpenGL libraries
Different libraries are available to run OpenGL on UNIX systems,
the ones used for this project are:

libglfw3 -dev , libglew -dev , mesa -utils ,
↪→ cmake , make

They are all available on the default ppa of APT and can be installed
like any other standard packages.

Virtual Display Script
Once the NVidia Drivers are working and the OpenGL-related
packages are installed, this instance has to be setup to be able to
run rendering program without any display connected. Unlike the
previous instructions and commands that are unaffected by reboots,
the virtual display setup has to be run every time the instance starts,
and therefore can be placed in a script if the instance will be reused.

The first thing to do is to stop the ligthdm service to be able to
disable the X server and modify it, by running

sudo service lightdm stop

As we want to modify some parameters of the X server, the next
command is to kill this process. It sometimes takes a little while
for the process to stop completely, and since it’s a non blocking
operation it often causes problems in the rest of the script. As a
”wait” command doesn’t solve this issue, the safest way to do this is
to loop the kill command until the process is stopped, for example:

sudo pkill X
res="$(echo $?)"
while [$res -eq 0]
do

sudo pkill X
res="$(echo $?)"

done

Then, we need to tell the NVidia Driver that we want to use a vir-
tual display with a given resolution. It can be done running the
command

sudo nvidia -xconfig -a --use -display -
↪→ device=None virtual =1920 x1080

Now that the driver is aware of the display virtualisation, we need to
modify the X server configuration to be compatible with the hard-
ware setup and the virtual display:

sudo sed -i ’s/ BoardName "GRID
↪→ K520"/ BoardName "GRID K520"
↪→ \n BusID "0:3:0"/g’ /etc/
↪→ X11/xorg.conf

To be able to run OpenGL programs on this configuration, the
DISPLAY environment variable has to be set to 0, or can be stored
using:

export DISPLAY =:0

The last thing that needs to be done is to relaunch the X server:

sudo /usr/bin/X &

The glxgears program can be used to test the configuration, and
should run at approximately 20000 frames per second.

Launch script at boot time
If the instance is supposed to be ready to run OpenGL at each boot,
all of these commands can be put in a script, then this script needs
to be made executable and finally copied in the correct directory:

chmod 755 display_script.sh
cp display_script.sh /etc/profile.d/

7.2 Running the socket.io C++ client

The first thing to do to be able to run the C++ client is to install the
full boost.io library, available directly on apt-get:

sudo apt -get install libboost1 .58-all -dev

Once thats done, the socket.io C++ client can be downloaded
at: https://github.com/socketio/socket.io-client-cpp.git Building
and using the socket.io as release libraries fails and doesn’t seem to
be really ready for use. A good work-around is to copy the complete
socket.io directory in the directory where other external library for
the project are stored (in our case: Caustics RayTracer/external)
and keep the CMake files provided as they are.
In the Cmake files of the project:

#Add in the linker flags
-pthread -lssl -lcrypto -glfw3
#Add as include:
include(external/sio/CMakeLists.txt)
#Add as targer link library:
sioclient

Once everything is ready for use, the only thing needed in the C++
project is to include in the sio client.h header.

7.3 Running a socket.io server

The socket.io javascript client and server rely on Node.js, so it must
be installed first. Node itself relies on some packages available on
apt-get:

sudo apt -get install build -essential
sudo apt -get install checkinstall
sudo apt -get install libssl -dev

Once their installation is complete, the Node Packet Manager re-
quired to install Node can easily be installed with curl:

curl -o- https ://raw.githubusercontent.com
↪→ /creationix/nvm/v0 .31.0/ install.sh |
↪→ bash

Finally, after exiting and launching the terminal again, run:

nvm install 7.7.4

https://github.com/socketio/socket.io-client-cpp.git

Figure 7: WebGallery Homepage

References

AWS, 2006. Amazon web services: reliable, scalable, and inexpen-
sive cloud computing services. https://aws.amazon.com/.

KHOURY, J.-N., 2016. An interactive web gallery for goal-based
caustics (part 1). https://jadkhoury.github.io/files/
WebGallery_Report_V2.1.pdf.

KHOURY, J.-N., 2017. A set of scripts and command to run opengl
and socket.io on an aws ubuntu instance. https://github.
com/jadkhoury/AWSscripts.

SOCKET.IO, 2013. Socket.io: the cross-browser websocket for re-
altime apps. https://socket.io/.

THREE.JS, 2015. Three.js, a javascript 3d library. http://
threejs.org/.

https://aws.amazon.com/
https://jadkhoury.github.io/files/WebGallery_Report_V2.1.pdf
https://jadkhoury.github.io/files/WebGallery_Report_V2.1.pdf
https://github.com/jadkhoury/AWSscripts
https://github.com/jadkhoury/AWSscripts
https://socket.io/
http://threejs.org/
http://threejs.org/

