
GPU Tessellation with Compute Shaders

a dissertation presented
by

Jad Khoury
to

The Department of Computer Sciences

in partial fulfillment of the requirements
for the degree of
Master of Science
in the subject of

Computer Graphics

Thesis Advisor: Mark Pauly
Project Supervisor: Jonathan Dupuy

E.P.F.L.
Lausanne, Switzerland

April 2018

©2018 – Jad Khoury
all rights reserved.

Thesis advisor: Professor Mark Pauly
Project Supervisor: Jonathan Dupuy Jad Khoury

GPU Tessellation with Compute Shaders

Abstract

In this thesis, we present a new adaptive tessellation method capable of run-
ning entirely on the GPU. Our GPU implementation on the (nonrecursive) linear
quadtree data-structure, in only storing the leaves of the tree as a concatenation
of 2bits-codes describing the path to the root. We show how to exploit this data-
structure to tessellate either triangles or quad polygons into smaller triangles by
manipulating a quadtree per polygon. In order to produce efficient GPU level-of-
detail, we exploit two different strategies to control the depth of the quadtrees that
lead to two distinct implementations. First, we study a distance-based metric that
consists of subdividing the quadtrees as primitives get closer to the viewpoint. We
show that this metric works well for scenes carrying polygons of roughly the same
shape and size. Second, we study a screen-space metric that consists of subdividing
the quadtrees as primitives get larger in screen-space. We show that this metric
is more general, but leads to high subidivision levels in the near projection plane,
which is undesirable for primitives that lie outside of the view frustum. Both our
implementations are free from complex pre-processing stages, lead to adaptive and
crack-free surfaces, and offer up to 31 levels of subdivision, which surpasses the
capabilities of the tessellation stage offered by current GPUs. We demonstrate the
effectiveness of our implementations on terrain and arbitrary meshes, and conclude
on the perspective of using our contributions to bring Catmull-Clark subdivision
surfaces to the gaming industry.

iii

Contents

0 Introduction 1

1 Quadtrees on the GPU 5
1.1 Introduction . 5

1.1.1 Surface Representation . 5
1.1.2 Quadtrees . 6
1.1.3 Notations . 7

1.2 Previous Work: Linear Quadtree 9
1.2.1 Data-structure description and update 9
1.2.2 Mapping from leaf-space to quadtree-space 10
1.2.3 From quadtree-space to object-space, using quadtrees for

meshes . 10
1.3 Contribution: Adapting Linear Quadtrees to Triangles 11

1.3.1 New tessellation scheme, same data-structure 11
1.3.2 Mapping from leaf-space to quadtree-space 12
1.3.3 Mapping from quadtree-space to object-space 13
1.3.4 Conclusion . 14

2 Adaptive Surface Subdivision - LoD and T-Junctions 15
2.1 Introduction . 15
2.2 Distance Based Approach . 16

2.2.1 Previous work: Distance Based LoD 16
2.2.2 Distance Based T-Junction Removal 17
2.2.3 Limitations of the Distance Based Approach 20

2.3 Contribution: Screen-Space Approach 20
2.3.1 Screen-Space LoD . 20
2.3.2 Screen-Space T-Junction Removal 23
2.3.3 Limitations of Screen-Space LoD 28

3 Implementation Details 29
3.1 Contribution: Pipeline Structure 29

3.1.1 Notations and definitions 29
3.1.2 First Approach: 3 passes, 1 array of command buffer 30
3.1.3 Second Approach: 2 passes & 1 copy pass 35

3.2 Key Data-Structure . 38
3.2.1 Format Description . 38
3.2.2 Contribution: Key Initialization 40
3.2.3 Contribution: Key Decoding 42

3.3 Contributions: Neighbour LoD Check, two other approaches 45
3.3.1 Neighbour Key Recovering 45

iv

3.3.2 Pre-Mapping Reflect . 48

4 Results 49
4.1 Distance Based Pipeline . 49
4.2 Screen-Scape Pipeline . 50

5 Conclusions 54
5.1 Future Work . 54
5.2 Personal Insight . 55

References 57

v

Acknowledgments

I would first like express my immense gratitude to Jonathan Dupuy, who super-
vised me during the complete duration of this project, and who always pushed me
to pursue more complex and interesting solutions without ever showing any sign
of doubt in my ability to find them.

I would also like to thank Christophe Riccio, who devoted countless hours to
sharing with me his invaluable knowledge about GPUs, graphical libraries, and
helped me shape the pipeline as it is today.

My deepest appreciation goes to the rest of the Grenoble Unity Labs team,
that took me in as one of their own, and offered me the opportunity to stay a little
bit more in this tiny research paradise that is their lab.

At last but not at least, I would like to thank Mark Pauly, for giving me the taste
for Computer Graphics, offering me projects with his lab, and always supporting
my love for rendering.

Finally, none of this would have been possible without the help and love from
my family and friends.

vi

0
Introduction

Context. In this thesis, we are concerned with the generation of digital images
with a computer; Figure 1 illustrates a few such images. More specifically, we
aim at developing an adaptive surface representation for objects that relies on
Subdivision Surfaces and is suitable for GPU-accelerated rendering.

Figure 1: Exemple of image renderings (1) An animation movie: Pixar - Geri’s Game (1997)
(2) A video-game: Naughty Dog - Uncharted 4 (2016) (3) A photo-realistic render: Denis Vema
- Industrial Loft 2 (2013)

Subdivision Surfaces. For most rendering purposes, the description of 3D
objects is limited to their surfaces via the meshing of a set of surfaces sample
points; figure 2 provides an illustration of this representation. A fundamental
property of this representation is that the amount of detail of an object is directly
proportional to the number of points used to describe it. As the ever-increasing
expectations for realism requires more detailed 3D surfaces, subdivision surfaces
have been developed to avoid the manipulation of unreasonably complex meshes,
and have been used as the standard primitive in the animation industry since it was
first used in Pixar’s Geri’s Game short movie in 1997. Intuitively, the idea behind
a subdivision surface is to generate a smooth continuous surface from a coarse

1

set of meshed points. This can be accomplished by first densely tessellating the
input mesh, and then displacing the new points according to a smoothing function;
Figure 3 illustrates this idea. In this work, we want to generate such surfaces in
parallel on the GPU. Our primary motivation is to bring this rendering primitive
to the video-game industry, which is still an open problem [Brainerd et al., 2016].

Figure 2: Example of meshing of a set of surfaces sample points

Figure 3: Example of surface subdivision applied on a cube mesh

The GPU. Real-time rendering pipelines leverage the Graphics Processing Unit
(GPU). The GPU provides a hardware implementation of the Z-Buffer algorithm,
which allows to convert polygon meshes into 2D images [Carpenter, 1984] [Catmull, 1974].
Nowadays, GPUs are parallel processors that can be programmed through shaders.
An efficient surface representation on the GPU should satisfy two constraints.
First, it should be fundamentally parallel in nature. Second, it should guarantee
the polygons its handles span onto more than a few pixels, as below this limit,
the Z-Buffer starts aliasing and the rasterizer’s efficiency decreases drastically
[Riccio, 2012].

Tessellation Shaders. Recent GPUs provide a tessellation engine [Cantlay, 2011]
[D3D, 2009] that can be configured through tessellation shaders. Tessellation en-
gines have been developed as an attempt to bring Subdivision Surfaces in real-time.

2

Despite their wide availability, their use has been limited for three main reasons.
First, tessellation units significantly slow down GPU rendering pipelines, espe-
cially when tessellation factors are high. Second, they are limited to very low
tessellation factors, allowing only 6 subdivision steps. Third, they often require
intensive pre-processing on artist-designed meshes in order to yield crack-free sur-
faces [Brainerd et al., 2016].

Adaptive Surfaces. To be usable in real-time and on the GPU, the subdivi-
sion algorithms should produce optimal on-screen polygons by simplifying and/or
enriching the mesh of the fly. This optimality resides in both producing an uniform
level of detail on the generated image, while avoiding the production of micro-
polygons. Since this subdivision is not uniform across the mesh, this pipeline
should then decide, for each image, where and how much it should refine the sur-
face. Figure 4.5 shows an example of such refinement. Quadtrees provide such a
scheme, and have been used extensively since the early days of rendering, espe-
cially for terrain rendering [Lindstrom et al., 1996], but they have been ported on
the GPU only recently [Dupuy et al., 2014] as their parallelization is not trivial.
Even available on the GPU, they remained to be adapted as a part of a complete
pipeline that subdivides terrains but also generic 3D meshes, in parallel.

Contributions and Outline. In the remainder of this thesis, we base our ap-
proach on the available GPU implementation of Quadtrees from [Dupuy et al., 2014]
to propose a complete rendering pipeline. We leverage our pipeline to subdivide
terrains but also generic 3D meshes, in parallel on the GPU in a few milliseconds.
This contrasts with previous methods that either rely on the CPU [Strugar, 2009],
produced cracks [Patney & Owens, 2008] or require sophisticated precprocessing
stages [Brainerd et al., 2016] . We hope that our pipeline will accelerate the adop-
tion of subdivision surfaces in the real time rendering industry. Our contributions
are:

• A parallel quadtree representation suitable for the GPU

• Support for both triangles and quads

• 31 tessellation levels

• Real-time execution, i.e. less than 17 ms.

• Simple implementation, i.e. free from any kind of mesh pre-processing

First, in chapter 1, we discuss how we generate geometry using Quadtrees. In
chapter 2 we determine where should this generation take place in the scene, and

3

how we can obtain crack-free surfaces regardless of the input mesh. Following the
explanation of our approach, we will present in chapter 3 some of the implemen-
tations in greater details, before providing qualitative results of our algorithms in
chapter 4.

4

1
Quadtrees on the GPU

1.1 Introduction

1.1.1 Surface Representation

The standard metric to qualify a rendering pipeline as “Real-Time” is the ability to
reach a rate of 60 frames per second (FPS) on consumer-grade hardware, granting
real-time algorithms less than 17ms to treat both the geometry and the shading.
To satisfy this major performance constraint, real-time graphics solution to surface
representation has been to formalize them as piecewise-linear surfaces, defined by
a set of simple polygons stitched together. Most of them break down into storing
a set of 3D position corresponding to vertices, and a set of subsets of these vertices
that define either faces, edges, or oriented half-edges. Storing more vertices and
faces can ensure a higher level of detail, like a higher sampling rate allows better
reconstruction of a signal. GPUs excel in very fast parallel treatment of many
(sometime millions) simple geometric primitives in real-time. But as the meshes
become more and more detailed, the primary bottleneck has become the memory
bandwidth between the memory storing the heavier surface representation and the
processing unit in charge of treating it [Nießner et al., 2016].

In an effort to palliate the memory bandwidth limitation, Subdivision Surfaces
have been adapted to the real-time pipeline, mainly with the development of
Hardware Tessellation. The insight is still to generate geometry from a coarser
mesh, but now on-the-fly and during a configurable stage of the pipeline. This
tessellation allows very fast generation of many primitives but offers only a limited
number of controls on the tessellation scheme itself, from the tessellation level that
is set for the whole primitive (non-recursive LoD) to the tessellation pattern that is

5

configurable but not programmable. Furthermore, a maximum level of subdivision
is enforced by the hardware, and because of the way it tessellates geometry, the
use of Hardware Tessellation often requires the meshes to be pre-processed in order
to obtain nicely subdivided crack-free surfaces

1.1.2 Quadtrees

Quadtrees are tree data-structures in which each node either has exactly four
children, or is a leaf. They are often used for 2D space partitioning, as their
construction is very intuitive and easy to code in its naive recursive variant. From
a high level algorithmic point of view, constructing a quadtree consists at each
step in considering a node, evaluating some division criterion on this node, and if
the criterion is met, adding four children to the node and recursively repeat the
routine on each of the created child. A visual example is given fig. 1.1.

When applied to surface subdivision, each quadtree node corresponds to a sec-
tion of finite area in the considered 2D space, and the criterion can be any metric
computed on this region (number of object in the region, color variation in the
region, ...). The creation of four children corresponds to the partitioning of the
space into four regions following a given Tessellation Rule. Traditionally, the con-
sidered 2D space is the unit square, and the children correspond to square regions
in the root unit square. The region covered in object-space by a given node can
then be computed using bilinear interpolation.

This algorithm has long been used for terrain representation [Lindstrom et al., 1996],
as it perfectly fits a quad grid on which we generate details by creating children to
the closest nodes, and then add details using a displacement map. Nevertheless,
we want our algorithm to work not only on quad grids, but also on any given 3D
mesh.

The first insight on our method is therefore the creation of one quadtree per
mesh primitive (and later one quadtree per root triangle). We will then draw
one base primitive per quadtree leaf, that we map from leaf-space to quadtree-
space, and map once again from quadtree-space to the corresponding control mesh
polygon in object-space, as illustrated in figure 1.2. This base primitive can be a
quad or a quad grid, a triangle or a triangle grid, but it has to satisfy one condition:
it has to be identical to an uniformly subdivided quadtree. In the case of a quad
control mesh for example, the quadtree space will be the unit square. The base
primitive can then either be a unit square, or a grid that is identical to a quad
quadtree that is uniformly subdivided n times, giving a 2n×2n grid. The first few
levels of quad grids are pictured in figure 1.3.

As we want our algorithm to be dynamic and run in real-time, in parallel and

6

on the GPU, the first order of business has been to get rid of the recursion and
define an iterative way to create and update a quadtree.

Figure 1.1: Generic run of the quadtree algorithm

Figure 1.2: Illustration of the space nomenclature. In blue is represented the base primitive

Figure 1.3: Three possible levels of the quad instanced grid

1.1.3 Notations

Before diving in the subject, let us define some notations:

• Unit square / quad: Polygon defined by {(0, 0), (0, 1), (1, 1), (1, 0)}

7

• Unit (right) triangle: Polygon defined by {(0, 0), (0, 1), (1, 0)}

• Unit Polygon: designates either the unit quad or the unit triangle

• Relevant Unit Polygon: Unit quad if the control mesh is defined by quads,
unit triangle if the control mesh is defined by triangles.

• Unit Space: 2D unit coordinate system {x, y ∈ R | (x, y) ∈ [0, 1]2}

• World Space: 3D coordinates system {x, y, z ∈ R | (x, y, z) ∈ R3}

• Control Mesh: Original mesh, before any subdivision scheme is applied

• Transformation: geometric application from Rn to Rn. In our application,
it’s considered to be a set of one rotation, one translation and one scaling,
stored in a 4× 4 matrix.

• Mapping: geometric application from Rm to Rn, mapping points from one
space to another

• Branching: ramification of the tree data-structure at a given subdivided
node. By extension, designates also the branch identifier defined by the
Tessellation Scheme

• Base primitive: primitive generated on the CPU and drawn once per
quadtree leaf. Depending on the control mesh, it can be a quad or a quad
grid, a triangle or a triangle grid. For simplicity, we consider that the base
primitive always spans on the same relevant unit polygon as the quadtree
it’s supposed to be used with.

• Unit grid Gi: Grid of dimension 2i × 2i spanning on the relevant unit
polygon, visually equivalent to a quadtree uniformly subdivided i times.

• Leaf-space: instance of unit space in which the base primitive spans on the
relevant unit polygon

• Quadtree-space: instance of unit space in which the quadtree spans on
the relevant unit polygon, and where the base primitive is mapped to cover
the region designated by the considered node and tessellation scheme

• Object-space: Instance of world-space where the coordinate system corre-
sponds to the basis of the control mesh.

• Relative branching transformation Ti(p): Mapping from Leaf Space
to Quadtree-Space. Corresponds to the transformation mapping vertices
from the base primitive defined on the relevant unit polygon, to the position
corresponding to the branching i in the quadtree after one subdivision. In
other words, it designates the transformation transforming a parent node
into its child i, under the assumption that the parent node spans on the
relevant unit polygon in unit space, as detailed in the beginning of this
section.

8

(a) Rule (b) Example

Figure 1.4: Numerated Quad tessellation rule along with an example of key construction

Final note on the used quadtree lexicon: as we always use a quadtree
to partition a unit polygon, the relation between a node of the data-structure and
the region it designates is bijective, and we can therefore use the quadtree lexicon
to label both the data-structure concepts and the corresponding spacial regions
interchangeably. Since we create one quadtree per control mesh polygon and that,
before being mapped to object space, all computations are done in the same unit
space, this non-distinction can be made without loss of generality. In this regard,
we can say that the quadtree spans on a unit triangle, even though the quadtree
itself is a data-structure and not a geometric entity.

1.2 Previous Work: Linear Quadtree

1.2.1 Data-structure description and update

Linear Quadtrees, proposed by [Gargantini, 1982], approach the creation of the
tree in an iterative manner, freeing us from the limitations induced by implement-
ing recursion on the GPU. To do so, the Tessellation Rule is numerated in such a
way that each children position relative to its parent is identified by an integer be-
tween 0 and 3 (see figure 1.4a), that we call branching identifier. By accumulating
these relative positions, we can identify each node uniquely by a key containing
all the branching from the root to the node, as shown on fig. 1.4b. The key of a
given child is then defined as the key of its parent, appended with the branching
identifier of the child. Hence, the quadtree can be uniquely defined as a list of all
its leaves keys.

To make the algorithm iterative, we first need to create two lists representing
alternatively the quadtree at its state t and t−1. Then, we update it by evaluating,
for each key, the subdivision criterion. Each key then produces in the “opposite”
list either itself, its parent, its four children or nothing, as detailed in algorithm 1.

We observe many major advantages in the algorithm 1 : the tree is stored only

9

Algorithm 1 Linear Quadtree Update (called each frame)
1: read_list← list0
2: write_list← list1
3: for all key k in read_list do
4: compute quadtree-space position of node from k
5: evaluate Subdivision criterion
6: if criterion requires subdivision then
7: for i from 0 to 3 do
8: child_k = append(k, i)
9: write child_k in write_list

10: else if criterion requires merging then
11: if k represents an upper-left child then
12: parent_k = truncateLastBranching(k)
13: write parent_k in write_list
14: else
15: write k in write_list
16: swap list0 and list1

by the leaves, there never are duplicates, the execution is completely agnostic
of the order of the key and we never need to sort them, and at last but not at
least, each key can be treated independently from the others at a given frame.
This allows each key to be treated in complete isolation, and we can therefore
implement this algorithm in parallel. In particular, we can have one thread per
key to read in the read_list, provided that the lists data-structures are accessed
in a safe concurrent manner. The upper-left child test is used to avoid writing
four times the key of the parent (since with a well constructed criterion, if a child
wants to merge, all 3 of its siblings also want to merge).

1.2.2 Mapping from leaf-space to quadtree-space

Recall that in Linear Quadtrees, the surface on which spans the tree is the unit
square [0, 1]2. The base primitive that corresponds to a node is also a unit square
(or a unit grid if the global subdivision level has to be artificially increased). The
transform that maps the base primitive from leaf-space to its position in quadtree-
space can then be decomposed in a scaling and a translation. These transforms can
be recovered directly using the decoding routines presented in [Dupuy et al., 2014]
and are illustrated in figure 1.5.

1.2.3 From quadtree-space to object-space, using quadtrees for
meshes

To subdivide a mesh using this approach, one quadtree per mesh primitive has
to be created and updated as explained in algo 1. As the quadtree subdivides

10

Figure 1.5: Example of transformation recovering from the key using the Linear Quadtree decod-
ing

the surface defined by the unit square [0, 1]2, the position of the leaves are easily
mapped from 2D quadtree-space to their position on the mesh in 3D object-space
using bilinear interpolation: Let p = (px, py) ∈ R2 be a point in quadtree-space
and Q be the quad in object-space defined by q0,q1,q2,q3 ∈ R3. The mapping
from quadtree-space to object-space can be computed as

q01 = px ∗ q0 + (1− px) ∗ q1

q32 = px ∗ q3 + (1− px) ∗ q2

pobject−space = py ∗ q01 + (1− py) ∗ q32

The major limitation of this approach is its restriction to quads subdivision,
therefore it cannot be used for triangular meshes that remain the standard surface
representation in real-time graphics. Our first contribution has been the adapta-
tion of the Linear Quadtree approach to triangle subdivision.

1.3 Contribution: Adapting Linear Quadtrees to Triangles

1.3.1 New tessellation scheme, same data-structure

To subdivide triangles, we first had to design a new tessellation pattern adapted to
that polygon. Let us first define the unit triangle as the surface inside the triangle
{(0, 0), (0, 1), (1, 0)}. On this unit right triangle, we base the new tessellation pat-
tern on the Sierpinski space filling curve and obtain the subdivision identification
pictured on the fig. 1.6. Note that this tessellation scheme has been used in previ-
ous work ([Duchaineu et al., 1999], [Pajarola, 2002]), but our approach differs in
that it computes two subdivision stages at once.

11

Figure 1.6: Top: tessellation scheme, bottom: Sierpinski space filling curve

As the numbering of the branchings and the tree construction do not change
from the Linear Quadtree approach, the implementation of the creation and up-
date of the tree using two arrays of keys can be kept as it is.

1.3.2 Mapping from leaf-space to quadtree-space

Nevertheless, the decoding of the keys, i.e. the recovering of the transformation
mapping the base primitive to its position in quadtree-space, needed to be re-
designed from scratch. Indeed, while quads only required scaling and translation,
triangles also need rotations to fit inside the unit triangle. Intuitively, in figure
1.6, if we tried to obtain the child 1 from its parent, we would need to scale it
down, translate but also rotate by 3π/2. For this reason, instead of being able
to recover the transform directly from the key, we need to decode it branching
per branching, from the root to the leaf, and accumulate the relative branching
transformations depicted in fig. 1.7.

In order to explain the intuition behind this method, we can picture a scenario
where we have to recover the transform corresponding to the node 302. Recall that
we define the relative branching transformation Ti as the transformation transform-
ing a parent node into its child i, under the assumption that the parent node spans
on the unit triangle. First, we recover T3 which contains a scaling and a transla-
tion. Then, we recover T0 and accumulate the scaling by multiplying it with the
one found in the previous step, and add the found translation with the one in T3.
Finally, we compute T2 and accumulate the translation and scaling in the same
manner as before, while also adding the rotation that requires the branching 2.

Special care has to be given when accumulating the translation in cases where

12

Figure 1.7: The four relative branching transformations associated with our tessellation scheme

previous steps found a rotation, since the direction should be rotated by the accu-
mulated rotation, as explained in section 3.2.3. By accumulating these transforms
and storing them in a 4 by 4 matrix, we obtain the complete mapping from leaf-
space to quadtree-space corresponding to any given node. The algorithms used
for this recovering are detailed in section 3.2.3.

1.3.3 Mapping from quadtree-space to object-space

Recall that for triangle quadtrees, the quadtree-space is defined by the unit trian-
gle {(0, 0), (0, 1), (1, 0)}. Any given point p ∈ R2 in this space can therefore be
expressed as

p ∈ [0, 1]2

p = (px, py)

px + py ≤ 1

13

We can set

λ0 = px

λ1 = py

λ2 = (1− px − py)

Expressing p in function of the unit triangle vertices, we get

p = (px, py)

= (1, 0) ∗ px + (0, 1) ∗ py
= (1, 0) ∗ λ0 + (0, 1) ∗ λ1 + (0, 0) ∗ λ2

And since we have λ0 + λ1 + λ2 = 1, the coordinates of p in quadtree-space can
be used as barycentric coordinates of the point p inside the unit triangle. Using
this, we can trivially map from the position in quadtree-space to the corresponding
position on the target mesh triangle in object-space by using the quadtree-space
coordinates as barycentric coordinates inside the target object-space triangle T =

{v0,v1,v2}:

pobject−space = v0 ∗ px + v1 ∗ py + v2 ∗ (1− px − py)

1.3.4 Conclusion

To summarize the triangle implementation of linear quadtrees, we obtained a
complete definition of quadtrees on triangle as we:

1. Kept the same key format and data-structure

2. Defined a new tessellation pattern in the unit triangle

3. Designed the corresponding relative branching transformation

4. Developed a routine that constructs mapping from leaf-space to quadtree-
space

5. Used the design of the quadtree-space to map points from quadtree-space to
object-space

14

2
Adaptive Surface Subdivision - LoD and

T-Junctions

2.1 Introduction

We presented a way to dynamically create and delete geometry from a control
mesh that can be defined by quads or by triangles. To obtain a complete Adaptive
Subdivision algorithm, what remains to be determined is where in the scene should
more geometry be generated, and how to dynamically remove T-Junctions from
the created geometry. The first problem can be broken down into finding an LoD
function. This function should take some kind of geometric measure corresponding
to the current node as input, and output the level of detail (hence LoD) of this
node. The design of this function should aim at satisfying two goals:

1. Reach a constant polygon-per-pixel ratio

2. Obtain a Restricted Tree, i.e. a tree in which two adjacent nodes have at
most one LoD of difference.

The first goal is oriented toward performance optimization. All polygons having
the same size on the screen, no matter their position in the scene, ensures that
the rendering has an uniform level of detail from the camera viewpoint, while
minimizing micro-polygons that decrease drastically the efficiency of the GPU
rasterizer [Riccio, 2012].

The second goal is rather a constraint that, when satisfied, allows us to run our
T-Junction removal algorithms and ultimately to ensure a crack-free, water-
tight surface. A T-junction is a degenerated situation where, when generating

15

Figure 2.1: Example of a T-Junction. We see that if the vertex is displaced, it creates a crack (in
dark red) on the surface.

geometry, a vertex is placed along the edge of an adjacent polygon. If we were
to displace the mesh, regardless of the displacement method, we would obtain a
crack in the surface, which is something to avoid by all cost. Figure 2.1 shows an
example of such scenario.

2.2 Distance Based Approach

2.2.1 Previous work: Distance Based LoD

The final step of real-time rendering often consists in projecting the 3D objects
in the scene from their world-space coordinates to their position on the screen
using a Perspective Projection Matrix. This intuitively enlarges objects closer to
the camera and shrinks the ones further away. An intuitive solution to finding the
LoD function would then be to use the distance from the camera to the polygon as
input metric, and the shorter it is, the higher is the LoD returned. This method
has a long standing tradition in the rendering of terrains, as the control mesh
is often a very coarse displaced grid, and close landforms would need a lot of
generated detail to be visually satisfying. It implicitly tends towards a polygon-
per-pixel ratio, and by using the log2 of a function of this distance, we are ensured
to obtain a restricted tree.

The LoD function we used for Distance-Based tessellation is detailed in eq. 2.1:

LoD(dist) = − log2

(
dist ∗ tan

(
fovy
2

)
√
2 ∗ factor

)
(2.1)

The fovy constant corresponds to the horizontal angle of the field of view of the
projection matrix. The factor is a user-set float constant that increase or decrease
the global level of detail continuously.

16

Figure 2.2: CDLOD morph function applied to the G2 grid, with morph_ factor = 0, 0.25, 0.50,
0.75, 1.0 from left to right

Figure 2.3: Illustration of the morph zones in 1D, image taken from CDLOD paper

For each node, we project from leaf-space to object-space the centroid of the
relevant unit polygon ((0.5, 0.5) for quads, (0.3, 0.3) for triangles) from leaf-space
to world-space as we would project any vertex of the base primitive, and use the
distance from camera position to this projected polygon centroid as metric for this
LoD function.

2.2.2 Distance Based T-Junction Removal

We now can associate a LoD to each node from its key, and the tree is ensured to
be restricted, meaning that we can assume that no pair of adjacent nodes in the
scene have more than one LoD of difference. Together with the instancing of quad
or triangle grid with of dimension superior to 2x2, this allows us to implement the
T-Junction removal approach proposed in [Strugar, 2009].

Previous Work: CDLOD T-Junction Removal This algorithm consists
in defining a morphing zone between two distance threshold, in which the instanced
grids vertices will morph along the outer edges to emulate the next lower LoD.
That way, when reaching the actual distance threshold, the grid will already have
artificially decreased its LoD and there will be no sudden LoD transition. In
practice, this is implemented in a Vertex Shader function that takes as input the
current vertex position in the leaf-space instanced grid, as well as a morphing
factor between 0 and 1 that progressively morphs the vertex from its original
position on the quad to its morphed position. The morph zone concept is visible
in figure 4.1 (page 49), illustrated in figure 2.3 and the morphing proposed by
[Strugar, 2009] is depicted in figure 2.2.

The idea behind this morphing is fairly simple: let us say that our base primitive

17

is a quad grid Gi of dimensions 2i×2i, with i ≥ 2. Recall that the subdivision of the
instance grid and the subdivision of the quadtree are visually identical, meaning
that if we subdivide once a quadtree on which we instantiate G1, it yields the same
set of vertices and edges than subdividing twice a quadtree on which we instantiate
G0, but also a non divided quadtree on which we span the grid G2. Example of
these grids are visible on figure 1.3 (page 7). More formally, subdividing a given
node once following the tessellation rule pictured in figure 1.4b (page 9), divides
it into a 2 × 2 grid, and on one of each of the four resulting quads, we draw one
instance of the base primitive. As an effect, the original region on which spanned
a 2i × 2i grid is now represented by a 2i+1 × 2i+1 quad grid. A harsh transition
between two LoDs will then be visible as a 2i × 2i grid, adjacent to a 2i+1 × 2i+1

grid, creating many T-Junction. To avoid this sudden change in LoD, the solution
is to morph the vertices present in Gi+1 and not in Gi to progressively slides along
the edges of Gi+1 to eventually overlap the vertices of Gi, in such a way that there
is no visual distinction between Gi and Gi+1 in its completely morphed state.

For better expressive power, the method will be explained alongside an example.
Let us say that we instantiate the grid G2 of dimensions 22×22 = 4×4. We denote
G∗

2 the set of vertices present in G2 but not in G1, and note that by construction

G1 ⊆ G2 and G2 = G1 ∪G∗
2

We would like to slide the vertices in G∗
2 of G2 to finally overlap the vertices of

G1. The first step is to determine the direction of this slide. To do so, we scale
G2 by the number of interval (i.e. its 1D dimension, e.g. 4 for G2) such that each
interval has length 1, and then scale it down by a factor of 0.5. This has for effect
of giving the vertices of G1 integer values, while the vertices in G∗

2 are decimal.
Computing the fract (i.e. the decimal part) of a vertex position after this scaling,
we obtain 0 for vertices in G1, and 0.5 for vertices in G∗

2. By multiplying by 2

and dividing by the number of interval, we finally obtain the vector from a vertex
position in its original grid to its position in the morphed grid. Multiplying this
vector by a morphing factor and subtracting it from the vertex position in the
base grid, we obtain the desired morphing function, which pseudo-code is given in
listing 2.1

18

vec2 morphVertex(vec2 vertex, float morphK)
{

float patchTessFactor = 4.0; // = nb of intervals per side of the primitive
vec2 fracPart = fract(vertex * patchTessFactor * 0.5);
fracPart *= 2.0 /patchTessFactor;
return vertex - fracPart * morphK;

}

Listing 2.1: CDLOD morph function

Contribution: Adapting CDLOD morph function to triangle grids
This method only works when instancing quad grids, and we wanted to adapt it
to run with our triangle quadtree. The LoD computation and subdivision can be
transposed without further modifications, but the morphing of the instanced grid
had to be adapted. Indeed, if used as it is, the vertices on the outer-edges of the
triangle grid are also displaced as shown in figure 2.4. We then have to modify the
morphing function that is applied to the vertices positions such that it becomes
symmetric w.r.t. the hypotenuse median, as shown on figure 2.13, guaranteeing
matching vertices position on two H-Neighbour. First, one can notice that the
CDLOD morphing function always displaced the vertices in the negative direction,
aiming at overlapping them with the vertices in G1 that are either in a lower, a
left, or a lower-left position. To achieve the symmetrical morphing desired, we
should displace the vertices alternatively in two opposite direction depending on
the interval it lays in. By taking the floor part of the scaled grid, we obtain the
interval of the vertex, easily compute one factor per axis, each one set to 1 if the
interval is even and −1 if the interval is odd (and stored in the vec2 signVec in
listing 2.2)

vec2 morphVertex(vec2 vertex, float morphK)
{

float patchTessFactor = 4.0; // = nb of intervals per side of the primitive
vec2 fracPart = fract(vertex * patchTessFactor * 0.5);
fracPart *= 2.0 /patchTessFactor;
if (prim_type == TRIANGLES) {

vec2 intPart = floor(vertex * patchTessFactor * 0.5);
vec2 signVec = mod(intPart, 2.0) * vec2(-2.0) + vec2(1.0);
return vertex.xy - (signVec * fracPart) * morphK;

} else if (prim_type == QUADS) {
return vertex - fracPart * morphK;

}
}

Listing 2.2: Updated morph function for our triangle grid
This LoD and T-Junction Removal altogether can be seen in action in section 4.1

19

Figure 2.4: Problem when applying the CDLOD morph function to our triangle grid

Figure 2.5: Updated morphing for our triangle grid, , with morph_ factor = 0, 0.25, 0.50, 0.75,
1.0 from left to right

2.2.3 Limitations of the Distance Based Approach

The problem with the distance based intuition is that we implicitly assume that
the control mesh is regular, i.e. that the primitives all have approximately the
same area. This may be the case for grids used in terrain rendering, but our
application should also work on artist-designed meshes, with great variance in
primitive areas. figure 2.6 depicts a scenario where using distance based level of
detail trivially yields bad results. As we don’t want to assume any additional
constraints on the input mesh, a Screen-Space approach has been developed to
circumvent the mesh regularity requirement.

2.3 Contribution: Screen-Space Approach

2.3.1 Screen-Space LoD

Intuitively, we should choose a metric that is representative of the Screen-Space
area on which a given primitive spans. The larger the area, the more the control-
mesh face should be subdivided. Using the projected area itself is nevertheless not
a great idea: if we were to treat with this approach a very long and thin triangle
with near-zero area, the LoD computed would be very low, hence not subdividing
the triangle sufficiently and losing potentially many details of a displacement map
(for example). The projected edge length could be a more robust alternative to

20

Figure 2.6: Showcase example of a situation where distance-based LoD is unsatisfactory. In green:
LoD check requires subdivision. In red: no subdivision

the projected area, and is often used along with Hardware Tessellation for its
simplicity and intuitive validity. Nevertheless, this approach could also lead to
problems near silhouettes, as illustrated on figure 2.7a. To palliate to both of
these problems, the chosen Screen-Space metric is the projected bounding sphere
of the control mesh edges, like in Pixar’s OpenSubdiv Real-Time API, illustrated
in figure 2.7b.

(a) Projected Edges (b) Projected Spheres

Figure 2.7: Showcase of a scenario problematic with edge-based metrics near silhouettes, but not
with projected spheres

Since we chose to use the projected containing sphere diameter as the metric
for the LoD evaluation, we should first determine on which edge will the LoD get
evaluated. We could evaluate the LoD on the mean projected metric of the three
edges of the triangle (or four for a quad), but that would break the restricted tree
constraint (recall 2 adjacent leaves cannot have more than one level of difference).
We therefore chose to triangulate every mesh primitives into a triangle fan.

Let us add two definitions to our lexicon for spaces and primitives:

21

• Root Triangle: Triangle resulting from the triangulation of the control
mesh, detailed in the screen-space approach. One root triangle is subdivided
by one quadtree, and one quadtree spans on exactly one root triangle.

• Polygon-space: Instance of unit-space, outlined by the relevant unit poly-
gon, where the quadtree spans on the corresponding root triangle. In the
chain of mappings, it sits between the quadtree-space and object-space.

A control mesh triangle is divided into 3 root triangles, and a control mesh
quad is divided into 4 root triangles. On each one of these root triangle we map
a triangular quadtree, and always evaluate the LoD on the hypotenuse of the
instanced base primitive, as shown in figure 2.8

Figure 2.8: Triangulation of control mesh polygons, adding an intermediate space between
quadtree and object. Top: Quads, Bottom: Triangles

The desirable effects of this triangulation are threefold:

• We can now assume that all the quadtrees are triangular, and most of
the code that had to be adapted to both quad and triangle primitive is now
simplified. As long as we triangulate, we always obtain triangle quadtrees
and only the last step of the mappings from polygon-space to object-space
is primitive-dependent.

• Since the base primitive is always a unit right triangle {(0, 0), (1, 0), (0, 1)}
(or a grid outlined by this triangle), we can always choose the same edge
to be evaluated for all drawn triangle: the hypotenuse [(1, 0), (0, 1)]

22

• By the construction of our triangulation, we are ensured that the triangles
instanced along the borders of the mesh primitive always have their hy-
potenuse overlapping said mesh edge. And since the LoD is evaluated on
this hypotenuse, we are ensured that two triangles that are adjacent
but belong to two different mesh primitive always have the same
LoD, see figure 2.9. For that reason, all T-Junction that could arise always
do inside of the mesh primitive, between two triangles that our algorithm
created. The T-Junction removal problem is now much more constrained
and easier to solve.

Figure 2.9: After triangulation, control mesh edges always support leaves hypotenuses (in red)

2.3.2 Screen-Space T-Junction Removal

To solve the T-Junction problem, the new triangulation and Screen-Space metric
approach required the Compute Pass to first detect and then remove T-Junctions
in a local neighbourhood.

T-Junction Detection Detecting T-Junctions around a given triangle is equiv-
alent to recovering the LoD of its adjacent triangles. By definition, a triangle
can have only 3 neighbours (we only consider edge-wise neighbourhood), and as

23

our instanced triangles are unit right triangles, we can denote the H-Neighbour
(H for hypotenuse), the X-Neighbour (sharing the [(0, 0)− (1, 0)] edge), and the
Y-neighbour (sharing the [(0, 0)− (0, 1)] edge) as depicted in figure 2.10. Note
that, by construction of our tessellation scheme, with Kn(T) designating the K-
Neighbour of T , for two triangles T0 and T1 :

Hn(T0) = T1 ⇐⇒ Hn(T1) = T0

Xn(T0) = T1 ⇐⇒ Y n(T1) = T0

Since we always evaluate the LoD on the triangle hypotenuse, two H-Neighbours
will always have the same LoD, and so at a local scale, detecting T-Junctions can
be summarized in the algorithm 2

Algorithm 2 T-Junction Detection
1: Compute the coordinates in object-space of the X-Neighbour and Y-Neighbour’s hypotenuse

(in orange in figure 2.10)
2: Evaluate the LoDs for these coordinates
3: Compare the estimated LoDs with the current triangle LoD
4: if Computed LoD is inferior then
5: T-Junction is detected

Note that we always check for lower LoD to avoid ping-pong situation between
two LoDs.

Figure 2.10: Neighbour notation, in leaf-space

To facilitate the second part of T-Junction removal, the removal itself, we do
this evaluation on the parent’s level. So in the scenario depicted in figure2.10, we
place ourselves in the leaf-space of the parent of the current leaf. But since the two
upper children (0 and 1) have no effect on the lower T-Junction and vice-versa,

24

we can restrict the computation to detect T-Junctions along the relevant edge of
the parent. The step 1 of the T-Junction Detection algorithm 2 is then updated
and detailed in algorithm 3

Algorithm 3 T-Junction Detection - Updated
1: if current leaf is on the X border of the parent (child 2 or 3) then
2: Compute the X-Neighbour hypotenuse object-space coordinates
3: else if current leaf is on Y border of the parent (child 0 or 1) then
4: Compute the Y-Neighbour hypotenuse object-space coordinates
5: Evaluate the LoDs for these coordinates
6: Compare the estimated LoDs with the current triangle LoD
7: if Computed LoD is inferior then
8: T-Junction is detected

The evaluation of the neighbour hypotenuse coordinates in object-space is less
trivial that it may seem at first sight. We developed three separate solutions to
this problem:

• Neighbour Key Recovering

• Pre-Mapping Reflect

• Post-Mapping Reflect

As we chose the last algorithm in the final implementation for its efficiency,
we will only detail this one in the current section, and explain the other two in
section 3.3 as they could have further interest (in particular the Neighbour Key
Recovering).

The Post-Mapping Reflect method consists in reflecting the parent’s hy-
potenuse after we apply the mappings to the hypotenuse. Since we already com-
puted the object-space coordinates of the current node hypotenuse to evaluate
its LoD, this approach allows us to save some computation and use these di-
rectly to compute the desired object-space coordinates. We define the reflection
Reflect(P,O) as

Reflect(P,C) = C + P⃗C

= 2C + P

We note O, U and R as in fig. 2.11 and we call the two end-points of the searched
hypotenuse H0 and H1, and T a temporary point created for simplicity. Using
the schemas in figure 2.12, we can now recover the object-space coordinates of the
target hypotenuse by implementing algorithm 4.

25

Figure 2.11: Notations for the Post-Mapping Reflect computations

Once we have these object-space coordinates, we don’t need to map anything
and can compute the neighbour’s LoD directly. Special care has to be given
in scenarios where the control mesh is displaced, since we should compute the
reflected positions before displacement, and compute both current and neighbour
LoD on displaced coordinates.

Algorithm 4 Neighbour Hypotenuse Computation in Object-Space
1: switch BranchingID do
2: case 0
3: H0 ← U
4: T ← Reflect(R,O)
5: H1 ← Reflect(H0, T)

6: case 1
7: H0 ← Reflect(R,O)
8: T ← Reflect(U,O)
9: H1 ← Reflect(H0, T)

10: case 2
11: H0 ← Reflect(U,O)
12: T ← Reflect(R,O)
13: H1 ← Reflect(H0, T)

14: case 3
15: H0 ← R
16: T ← Reflect(U,O)
17: H1 ← Reflect(H0, T)

18: Map the edge [H0,H1] to object-space

If the neighbour lies outside the current root triangle, we recover the neighbour’s
node identifier nodeID (method detailed in section 3.3.1), recover the identifier
of the root triangle it lies in (rootID), use the nodeID and rootID to map the
unit triangle hypotenuse [(1, 0), (0, 1)] from leaf-space to object-space, and finally
compute the LoD on the object-space coordinates.

26

Figure 2.12: Post-Mapping Neighbour Hypotenuse computation for leaves 0 (top-left), 1 (top-
right), 2 (bottom-left) and 3 (bottom-right)

T-Junction Removal Now that the LoD of the neighbour is evaluated, we
can deterministically detect any T-Junction in the local neighbourhood of the
currently treated quadtree leaf. What remains to be determined is the removal of
discovered T-Junction.

Recall that in all the neighbour LoD check methods, two leaves sharing the
same border of their parent will evaluate the same neighbour, hence detecting the
same T-Junction if there should be one. E.g. in figure 2.10 (page 24), if there was
a T-Junction between the X-Neighbour and the parent of the four children, both
children 2 and 3 will detect it. For this reason, we reserve in the key data-structure
3 bits that serve as flags for X-morph, Y-morph and Destroy. Since leaves that
detect a T-Junction always do so in pairs, when detecting a T-Junction in the
Compute Pass, we set for the even child the relevant morph flag, and for the odd
sibling, the destroy flag. In the render pass, we simply don’t render any node with
the destroy flag set, and morph appropriately the nodes with the morph flag to
take both of their places. To come back to our example, in figure 2.10, the child 3
will get destroyed and the child 2 will be transformed to take both of their places,
as illustrated in figure 2.13.

In conclusion, our T-Junction removal approach allows us to

• Detect all T-Junction in the created subdivision

27

Figure 2.13: T-Junction Removal in the Screen-Space Approach

• Remove them

• Every T-Junction kills an odd quadtree leaf =⇒ 1 less triangle to render
per T-Junction

• The morph bit is propagated along with the key, allowing the render pass
to morph directly when computing the mapping from unit-space to object-
space using the key

2.3.3 Limitations of Screen-Space LoD

The major caveat of our implementation of the screen-space metric resides in
the fact that by using the projected length, it subdivide to an extreme level the
primitives that are very close to the zNear plane, as shown in figure 4.6 (page 52).

28

3
Implementation Details

In this section, we will go back to some of the algorithms and aspects of the project
presented in the previous chapters, to provide the reader a more in-depth review
of our implementations and methods.

3.1 Contribution: Pipeline Structure

The program structure as well as the buffer architecture changed often in the
development of this project, and we will only explain the two major variants in
their most accomplished form. Before diving in, let us first define a few key
concepts.

3.1.1 Notations and definitions

• Pass: each frame requires the execution of a few programs sequentially, that
we denote on a higher level as passes

• Compute Shader: programs that run on the graphics card, outside of the
normal rendering pipeline. They can be used for massively parallel GPGPU
algorithms, or to accelerate parts of 3D rendering. We use the term dispatch
to designate the launch of compute shader invocation. They are run in
workgroups.

• Workgroup: a set of compute shader invocation, that execute in parallel
and share the GPU shared memory. The workgroup is defined by a 3D
local size, but since we don’t take advantage of GPU shared memory, and
therefore don’t need a conceptual multi-dimensional partition of our working
space, we treat the workgroups in 1D (i.e. we define the x dimension of the
workgroups). It is common practice to have a local workgroup count of at

29

least 32 for better efficiency. Furthermore, the workgroups themselves are
dispatched in a 3D manner, where for each dimension we have a workgroup
count, e.g. we could have 3× 3× 3 worgroups, each of size 32× 32× 1, for
a total of 27648 compute shader invocations. As before, we just use the x
dimension of the workgroup count.

• Shader Storage Buffer Object (SSBO): Buffer Object that is used to
store and retrieve data from within the OpenGL Shading Language [Segal & Akeley, 2017].
They offer large storage capacity on video memory, while allowing shaders
to both read and write in their data-structure.

• Atomic Counter: a data-structured proposed by OpenGL that offers
atomic operations and that allows the handling of variables in a concurrent
manner. The use of a variable as Atomic Counter is defined by the way it is
bound to the program from the CPU, and not by the variable itself, mean-
ing that the same variable could be treated as an atomic counter in a given
pass, and as a variable stored in an SSBO in a different pass, as long as the
bindings are implemented correctly on the CPU side. It is also possible to
call atomic functions on variables stored in an SSBO, as it is the case in the
first approach detailed below.

• Indirect Call: The traditional method for both draw calls and compute
dispatches consists in implementing them on the CPU side, and passing
all the required parameters as function arguments. To be able to modify
these parameters from GPU, OpenGL offers the possibility of storing these
parameters in a buffer, stored locally on the graphics card. Then, instead
of using the traditional function calls, we bind this buffer appropriately and
use the indirect variant of the OpenGL function. The program will then
look for the parameters in the buffer and launch the shader invocations as
desired.

3.1.2 First Approach: 3 passes, 1 array of command buffer

In its initial design, the program goes through three passes at each frame. We
use the DrawElementsIndirect command to be able to set the number of instances
to render asynchronously on the GPU. To do so, we created the following buffer
architecture.

Two lists of keys implemented as two Shader Storage Buffer Objects (SS-
BOs), respectively corresponding to the quadtree at frames t and t−1, and between
which we ping-pong at each frame. For example, at a given frame, the program
works as follow:

30

• Compute Pass: Read the keys from SSBO 0

• Compute Pass: Write the new keys in SSBO 1

• Cull Pass: Read the new keys in SSBO 1

• Cull Pass: Write the keys that didn’t get culled in SSBO 0

• Render Pass: Read the keys that didn’t get culled in SSBO 0 and render
the corresponding triangles

• CPU : swap SSBO 0 and SSBO 1

It is important to keep the keys that did get culled since if the camera were to
rotate and look at a region of the mesh that was previously culled, the Compute
Pass should still be able to treat the keys, and eventually merge / divide the nodes
in this area.

An array of DrawElementsIndirectCommand that we will call command_array,
stored in an SSBO and that has two purposes: keeping track of the number of
keys to treat in a given pass, and serving as command buffer for the indirect draw
calls. Each element of the array contains a complete DrawElementsIndirectCommand,
as pictured in fig. 3.1. Each one of these command is composed of 5 variables
corresponding to different parameters for the draw call, one of which designates
the number of instances of base primitive to draw: primCount. By atomically in-
crementing that variable at the correct index, each pass can then keep track of the
number of keys it produces, and OpenGL can later use its final value to render
the correct number of primitives. In more details, the command_array is managed
as follow:

• Compute Pass: Read the primCount from command_array[i]

• Compute Pass: At each key write, atomically increment the primCount in the
command_array[i+1]

• Cull Pass: Read the primCount from command_array[i+1]

• Cull Pass: At each key write, atomically increment the primCount in com-
mand_array[i+2]

• Render Pass: Read the primCount from in command_array[i+2]

• CPU : Reset the DrawElementsIndirectCommand in command_array[i+shift] and
in command_array[i+shift+1]

• CPU : i← i+ 2

31

Note that the index incrementation is done modulo the number of elements in
the array, such that the executions cycle through it. The resetting is critical to keep
a correct count of primitives to treat since we should not increment on the previous
primCount. We use an array and delete with a shift instead of simply using two
commands between which we ping-pong as we want the implementation to stay as
asynchronous as possible. If the draw command is managed in a ping-pong manner,
we would need at each frame to wait for the target DrawElementsIndirectCommand

to get reset before being able to start the computation for the next frame. Using a
shift, we can start incrementing the next command without being ensured that the
value at the end of last frame has been reset. This buffer architecture is illustrated
in figure 3.1.

As one can notice, this implementation relies on three passes.

A Compute Pass that implements in a Compute Shader the algorithm 1 (page
10), responsible for updating the Linear Quadtree data-structure for a frame. We
call read_list the SSBO in which the last iteration stored the keys, and write_list

the SSBO that will store the new keys. Two elements of the command_array are
bound as SSBOs, corresponding to command_array[i] and command_array[i+1] in
the algorithm explained in the previous paragraph. In each of these buffers, we
denote the variable of interest respectively as old_primCount and primCount.

At each frame, we dispatch a fixed number of shader invocations running the
pseudo-code presented in listing 3.1.

32

int leaf_count = old_primCount;
int invocationID = getUniqueInvocationID();
if (invocationID > leaf_count)

return;
uvec4 key = read_list[invocationID];
vec3 p_obj_space = mapToObjSpace(p_leaf_space, key);
float current_LOD = getLevelInKey(key);
float target_LOD = computeLoD(p_obj_space);
if (target_LOD < current_LOD - 1) {

if (isUpperLeftChild(key)) { // avoid storing 4 copies of the parent key
int idx = atomicAdd(primCount, 1); // returns value before atomic increment
write_list[idx] = getParentKey(key);

}
} else if (target_LOD > current_LOD) {

uvec4 children[4] = getChildrenKeys(key);
for (int i = 0; i < 3; ++i) {

int idx = atomicAdd(primCount, 1);
write_list[idx] = children[i];

}
} else {

uint idx = atomicAdd(primCount, 1);
write_list[idx] = key;

}

Listing 3.1: Compute Pass in the first program architecture

At the end of this pass, we obtain an updated Quadtree that satisfies the re-
stricted tree constraint as long as the LoD function is well defined.

A Cull Pass , also implemented in a Compute Shader, and responsible for
copying in the opposite quadtree SSBO the keys that correspond to nodes that
are inside the view frustum. The implementation is simple: we bind two ele-
ments of the command_array as SSBOs, corresponding to command_array[i+1] and
command_array[i+2] in the paragraph focused on the array of DrawElementsIndirect-
Command. The variables of interest in these buffers are denoted like in the Compute
Pass, and the pass pseudo code is detailed in listing 3.2.

33

int leaf_count = old_primCount;
int invocationID = getUniqueInvocationID();
if (invocationID > leaf_count)

return;
uvec4 key = read_list[invocationID];
vec3 p_obj_space = mapToObjSpace(p_leaf_space, key);
if (isOutOfFrustum(p_obj_space))

return;
uint idx = atomicAdd(primCount, 1);
write_list[idx] = key;

Listing 3.2: Cull Pass in the first program architecture

A Render Pass responsible for rendering the triangles corresponding to the
last state of the quadtree. The number of invocations is fixed by the number of
vertices in the primitive to render, and by the primCount set by the cull pass. By
now the render pass implementation should be trivial, but is detailed in Listing 3.3

// VERTEX SHADER
in vec3 vertex;
out vec3 v_pos;
// ...
uvec4 key = read_list[gl_InstanceID];
vec3 p_obj_space = mapToObjSpace(vertex, key);
v_pos = p_obj_space;

// FRAGMENT SHADER
in vec3 v_pos;
// ...
color = shade(v_pos);

Listing 3.3: Render Pass in the first program architecture

With this implementation, it becomes clear why we don’t need to clear the
buffer containing the keys: at each pass, the invocations read the key stored at
the index corresponding to their invocation identifier. If this ID is greater than
the number of keys to treat, the invocation returns without computing anything.
Otherwise, the current invocation writes the correct key(s) at the first available
index in the list, determined by the use of an atomic counter with value 0 at the
beginning of the pass, that is then incremented at each key write. In this manner,
the keys are tightly packed, and only the relevant keys get treated. Nevertheless,
a major caveat of this approach is that the number of compute shader invocations
is fixed. This number should be large enough to tackle the worst case scenario
where the key lists are full, but if there only are a few nodes to treat, a very
large proportion of these invocations will be launched for nothing, thus greatly

34

impacting the performance of the program.
We see that this implementation is quite complex and it truly has been hard

to maintain and update when we changed some details in our implementation, in
particular keeping up with the read, write, full, culled, reset, shift indices of the
arrays. The three passes architecture is also wasteful as it requires to compute
the world space coordinates three times, once in each pass. This operation is very
expensive since we must apply three mappings to each primitive in the quadtree.
The resetting of the primCount values with a CPU OpenGL command was also not
ideal. To palliate to all the caveats of this implementation, we decided to design
once again everything from scratch and obtained the following implementation.

Figure 3.1: First program structure: 3 passes

3.1.3 Second Approach: 2 passes & 1 copy pass

This architecture has been developed with efficiency and ease of use as priorities.
First, we merge the Compute Pass and the Cull Pass to avoid unnecessary

mappings and expensive computations.
To store the keys, we use 3 lists of keys instead of two. We denote them as

read_list, write_full_list and write_culled_list, and we properly cycle between

35

these identifier on the CPU.
We switched from direct to indirect compute shader dispatching to be able to

dynamically update the number of compute shader instances we launch, and the
program now has two (and only two unique) command buffers, one containing the
DrawElementsIndirectCommand, and the other, the DispatchIndirectCommand.

To keep track of the number of keys, we implement two arrays of simple atomic
counters: the first one, primCount_full, for the full set of keys, and the second,
primCount_culled for keys that pass the cull test. We associate to these arrays
three indices read_index, write_index and delete_index which purpose are self-
explanatory, and that are updated, and uploaded as uniform, from the CPU. This
last index is equal to the read_idx minus some shift, allowing us to keep the
transition between two states asynchronous.

With these notation we can detail the execution of the passes as follows:

Figure 3.2: Second program structure, compute and cull pass are merged

Compute & Cull Pass A single pass is now in charge of updating the quadtree,
and storing in a separate data-structure the keys corresponding to triangles that
are visible during the present frame with the current camera settings (stored in
the Model-View Matrix). Its execution is detailed in listing 3.4

36

layout (binding = 0) uniform atomic_uint primCount_full[16];
layout (binding = 1) uniform atomic_uint primCount_culled[16];
uniform int read_index, write_index;

// ...
int leaf_count = int(atomicCounter(primCount_full[read_index])); // Returns the

value
int invocationID = getUniqueInvocationID();
if (invocationID > leaf_count)

return;
uvec4 key = read_list[invocationID];
vec3 p_obj_space = mapToObjSpace(p_leaf_space, key);

// Compute
float current_LOD = getLevelInKey(key);
float target_LOD = computeLoD(p_obj_space);
if (target_LOD < current_LOD - 1) { // Merge

if (isUpperLeftChild(key)) { // avoid storing 4 copies of the parent key
uint idx = atomicCounterIncrement(primCount_full[write_index]); // returns

value before atomic increment
write_full_list[idx] = getParentKey(key);

} else {
return;

}
} else if (target_LOD > current_LOD) { // Divide

uvec4 children[4] = getChildrenKeys(key);
for (int i = 0; i < 3; ++i) {

uint idx = atomicCounterIncrement(primCount_full[write_index]);
write_full_list[idx] = children[i];

}
} else { // Simply copy

uint idx = atomicCounterIncrement(primCount_full[write_index]);
write_full_list[idx] = key;

}
// Cull
if (isOutOfFrustum(p_obj_space)) // Cull

return;
uint idx = atomicCounterIncrement(primCount_culled[write_index]);
write_culled_list[idx] = key;

Listing 3.4: Compute & Cull Pass in the second program architecture

We see here why the merging of the Compute & Cull Pass pass required the use
of three lists of keys representing the full quadtree at t− 1, the full quadtree at t

and the culled quadtree at t− 1.

Copy Pass If we were to set the local workgroup count to 32 and the last
Compute & Cull pass stored 3200 keys in the write_full_list, we should then
set the number of workgroups to 3200/32 = 100 in the DispatchIndirectCommand.
Nevertheless, this simple integer division cannot be performed from CPU while

37

copying data from a buffer to another without passing the data to the CPU and
upload it again to GPU, hence forcing synchronism. This is the first reason why
we investigated the idea of a Copy Pass. Note that the arrays of counter are
here accessed by a single thread, and so they don’t need to be bound as atomic
counters.

// Only one instance of the Copy program is necessary
layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;

// Binding the arrays of primCount as SSBOs as no concurrence is needed
layout (std430, binding = 0) buffer full_buffer {

uint primCount_full[16];
};
layout (std430, binding = 1) buffer culled_buffer{

uint primCount_culled[16];
};
// ...
uint full_count = primCount_full[read_index];
uint culled_count = primCount_culled[read_index];

// Set the number of workgroups to instantiate at the next frame
workgroup_size_x = uint(full_count / float(local_wg_count)) + 1;
// Set the number of instances to draw during the following render pass
drawCommand.primCount = culled_count;

// Reset the counters with a shift
nodeCount_full[delete_index] = 0;
nodeCount_culled[delete_index] = 0;

Listing 3.5: Copy Pass in the second program architecture

Render Pass Apart from some minor modification to suit the new workflow,
the render pass did not need a lot of changes.

This new implementation is illustrated in Figure 3.2

3.2 Key Data-Structure

3.2.1 Format Description

Previous Work: Our first implementation of Linear Quadtrees followed the
format presented in [Dupuy et al., 2014]. The keys are stored in uint variables.
Four bits at the end are reserved to store the subdivision level of the designated
leaf, and the remaining 28 bits store the branchings, accumulated as pictured in
figure 1.4a (page 9). As each branching is designated by an integer between 0 and
3, each one can be stored in 2 bits, allowing the key to store 28/2 = 14 branchings,
which works well with the maximum level of 15 that can be stored in the least

38

significant 4 bits. For example, to store the key 30123 at level 5, we set the key to:

0000 0000 0000 0000 0011 0001 1011 − 01012

which in base4 is equivalent to (the level not being in base4).

00 00 00 00 03 01 234 − 510

Contribution: new way to store the level in the key We realized
that using four bits to define the level was quite wasteful, while storing explicitly
the level of subdivision remained in itself necessary. Intuitively, if read the key
stored in an variable set to 0, we cannot differentiate between leaf 0, 00, 000 etc.
if we did not have a way to store and read the LoD in the key. Another way to
see this problem is how to differentiate between the zeros corresponding to the
initial value of the variable, and the zeros corresponding to actual branchings in
the quadtree.

By defining the problem as such, we can see that it suffices to set some kind of
barrier between the initialization zeros and the ones corresponding to branchings.
This is easily done by prepending a 1 before the list of all branchings of the leaf.
For example, the key 3 would be stored as

0000 ... 0000 01112 = 00 ... 00 134

while the key 03 would be stored as

0000 ... 0001 00112 = 00 ... 01 034

We can now define the key 00000, corresponding to the upper-left leaf of a a
quadtree subdivided five times, as

0000 0000 0000 0000 0000 0100 0000 00002 = 00 00 00 00 00 10 00 004

This evolution allows us to save 2 bits and to reach a maximum level of subdivision
of 15, but required the re-implementation of most of the function handling the keys
and the level.

Contribution: 31 levels in a 4-integer key To exceed more significantly
this number of possible subdivisions, and the ones generally achievable in the
usual tessellation implementations on CPU or Tessellation Hardware, we need to
find a way to circumvent the limitations induced by the use of uint variables.

39

Using the long format would provide us 64 bits to store the branchings and the
level, but glsl doesn’t offer long variables without the use of external extensions.
Nevertheless, what is feasible with only native types is using two uint stored in
a vec2 that we artificially concatenates by reimplementing the bitwise operations,
such as leftShift, rightShift, findMSB etc... Replacing the native implementations
of these operation by our custom ones that take vec2 as input, we easily adapt
the algorithms to this new format. Since we still use 2 bits to prepend the 1 that
delineate the transition between the zeros of the initial variable value from the
zeros that designate branchings, we now have 2 × 32 − 2 = 62 bits to store the
branching, allowing 31 level of subdivision !

Remember that we create one quadtree per control mesh primitive (or one per
root triangle in the screen-space approach). To decode a key and find the position
in world space of the currently treated leaf, we need means to recover the position
of the control mesh primitive in world space on which we should map the quadtree.
For this purpose, the key stores an integer meshPolygonID that uniquely designate
the face of the control mesh to which the current quadtree corresponds. In other
words, all of the nodes of a given quadtree share this identifier, and when mapping
from quadtree-space to object-space, we use this ID as index in the list of faces
that are uploaded on the video memory.

Furthermore, as the control mesh is triangulated, we also need an identifier that
labels which one of the 3 (or 4) root triangles corresponds to our quadtree. An
additional integer rootID is then used for this purpose.

Finally, recall that we need 3 bits for the X-Morph, Y-Morph and Destroy flags
for our T-Junction Removal algorithm to work, as explained in section 2.3.2. As
the rootID only takes two bits, we can append these flags at the most significant
position of the integer used for rootID.

The key in its final implementation is then defined in an uvec4 as depicted in
Listing 3.6

key[0] = nodeID_MostSignificant32Bits;
key[1] = nodeID_LeastSignificant32Bits;
key[2] = meshPolygonID;
key[3] = (X_Moph_flag, Y_Moph_flag, Destroy_flag, rootID);

Listing 3.6: Key data-structure in an uvec4

3.2.2 Contribution: Key Initialization

At initialization, the program should fill the read_list with keys such that the
quadtree algorithm can start subdividing the mesh. Let n be the number of

40

primitives (quads or triangles) in the control mesh. Since we triangulate the
primitives and create one quadtree per root triangle, we respectively obtain 3n

quadtrees for a triangle mesh, and 4n quadtrees for a quad mesh. At initialization,
the quadtrees are not subdivided, and the nodeID is simply 0, prepended with the
1 determining the level by its position. Since the level is zero, we have

nodeID = 0000 ... 0000 00012 = 00 ... 00 014

The meshPolygonID has to correspond to the position of the face in the list. Since
all root triangles are equal at initialization and that the faces are stored in a
tightly packed data-structure, it suffices to increment the meshPolygonID for each
face quadtrees.

Finally, the rootID is simply an integer between 0 and 2 for triangle meshes,
and 0 and 3 for quad meshes, designating which of the root triangles created on
the mesh polygon corresponds to the quadtree. Once again, since all quadtrees
are similar at creation, we can simply increment rootID at creation for each root
triangle key of a given mesh primitive. The flags sharing the integer are never set
at initialization and so we can ignore them.

As for now, the size of the buffers containing the quadtrees is not dynamic, we
reserve as much memory as possible and use the routine in listing 3.7 to initialize
it:

// Key data-structure:
// key = uvec4(nodeID_MSB, nodeID_LSB, meshPolygonID, rootID)
uvec4* read_list = new uvec4[max_num_nodes];
if (primitive_type == TRIANGLES) {

init_node_count_ = 3 * mesh_data_->triangle_count;
for (int ctr = 0; ctr < mesh_data_->triangle_count; ++ctr) {

read_list[3*ctr+0] = uvec4(0, 1, uint(ctr*3), 0);
read_list[3*ctr+1] = uvec4(0, 1, uint(ctr*3), 1);
read_list[3*ctr+2] = uvec4(0, 1, uint(ctr*3), 2);

}
} else if (primitive_type == QUADS) {

init_node_count_ = 4 * mesh_data_->quad_count;
for (int ctr = 0; ctr < mesh_data_->quad_count; ++ctr) {

read_list[4*ctr+0] = uvec4(0, 1, uint(ctr*4), 0);
read_list[4*ctr+1] = uvec4(0, 1, uint(ctr*4), 1);
read_list[4*ctr+2] = uvec4(0, 1, uint(ctr*4), 2);
read_list[4*ctr+3] = uvec4(0, 1, uint(ctr*4), 3);

}
}

Listing 3.7: Key initialization
For example, if the control mesh was a cube defined by six squares, we would

obtain at initialization the array detailed in listing 3.8

41

// Key data-structure:
// key = uvec4(nodeID_MSB, nodeID_LSB, meshPolygonID, rootID)
// Face 0
read_list[0] = uvec4(0, 1, 0, 0);
read_list[1] = uvec4(0, 1, 0, 1);
read_list[2] = uvec4(0, 1, 0, 2);
read_list[3] = uvec4(0, 1, 0, 3);
// Face 1
read_list[4] = uvec4(0, 1, 1, 0);
read_list[5] = uvec4(0, 1, 1, 1);
read_list[6] = uvec4(0, 1, 1, 2);
read_list[7] = uvec4(0, 1, 1, 3);

...

// Face 5
read_list[20] = uvec4(0, 1, 5, 0);
read_list[21] = uvec4(0, 1, 5, 1);
read_list[22] = uvec4(0, 1, 5, 2);
read_list[23] = uvec4(0, 1, 5, 3);

Listing 3.8: Example of initialization keys for a quad cube

3.2.3 Contribution: Key Decoding

As mentioned in section 1.3, the implementation of Linear Quadtrees of [Dupuy et al., 2014]
is provided with functions that return the translation and scaling that, applied to
the base quad, map it to its position in the unit square of the Quadtree. But as
our triangle tessellation pattern also required rotation for the children 1 and 2, it
was necessary to redesign the recovering of transformations for a given key from
scratch.

The idea behind this new design is to consider the key as a pile of branchings,
and decode it index by index, from root to leaf, computing each time the associated
transformation and accumulating them to finally return the transformation matrix
that maps the unit triangle to the position of the leaf in the triangle quadtree.
The difficulty of properly accumulating the transformations is due to the fact
that, by construction, the mapping from leaf-space to quadtree-space should cycle
between scaling, rotation, and translation, at each branching, all of this relative
to a parent that is considered to span on the unit triangle {(0, 0), (0, 1), (1, 0)}. In
other words, the complete mapping from leaf-space to quadtree-space is the matrix
containing one rotation, one scaling and one translation, that when applied to a
point is equivalent to successively applying the relative branching transformation
corresponding to each branching in the key. As by definition, the relative branching
transformations are defined in function of a parent spanning on the unit triangle,

42

the routine thus cannot compute the translation and angle of rotation at each
branching and simply accumulate them to the previous translation and angle of
rotation, since the parent could already be translated and rotated.

The solution is then to adapt the relative branching transformation by taking
into account the ones previously computed. Intuitively, we see that:

• The angles of rotation can simply be added up at each iteration

• The scaling is divided by 2 at each iteration and so the scaling can simply
be accumulated by multiplying it by 1

2
for each branching

• The translation is the less trivial transform, as it should have its length equal
to the scaling, and its natural direction (given as relative to the parent in
the unit triangle) rotated by the previous rotation angle.

More explicitly, we can write this routine as the following pseudo-code (list-
ing 3.9)

float theta = 0.0, scale = 1.0;
vec2 tmp, translation;
int current_branching; // integer between 0 and 3
for (int i = level-1; i >= 0, i--) // for each branching, starting from root
{

current_branching = getBranching(key, i);
tmp = scale * getTranslation(current_branching);
translation += rotate(tmp, theta);
theta += getRotation(current_branching);
scale *= 0.5;

}

Listing 3.9: Overview of the key decoding algorithm

The respective transformation for each possible branching (i.e. the ones re-
turned by getTranslation and getRotation) are detailed in figure 1.7 (page 13).

These functions could have been naively implemented as a switch between four
cases, returning in each one the correct transformation, but it would have been very
inefficient performance-wise. Indeed, at compile time, each conditional statement
for which the condition is not evaluated on an uniform variable gets developed,
and each branch gets evaluated even if only the correct ones return or affect a
variable. For this reason, we used binary operations that allow us to avoid any
kind of condition. Let us first clearly list the respective transforms in table 3.1

Here, b1b2 is a naming convention used to make the binary operations more ex-
plicit when using the bit representation of the branching. Stored in uint variables,
b1b2, b1 and b2 are easily recovered by using a shifting mask on the nodeID. To

43

Table 3.1: Relative transformation from parent unit right triangle to leaf position. The rotation
needs to be multiplied by π/2 and the translation by 1

2

Branching b1b2 b1 b2 rotation translation.x translation.y scale
0 00 0 0 0 0 1 0.5
1 01 0 1 3 0 1 0.5
2 10 1 0 1 1 0 0.5
3 11 1 1 0 1 0 0.5

illustrate:

branching = 24 =⇒ b1b2 = 102 =⇒ b1 = 1 & b2 = 0

Thanks to this representation of the relative transformation, the getTranslation

method can be trivially implemented as shown in listing 3.10.

vec2 getTranslation(uint b1)
{

vec2 translation;
translation.x = float(b1 & 0x1); // eq. to (b1 == 1)
translation.y = float(b1 ^ 0x1); // eq. to (b1 == 0)
return translation * 0.5;

}

Listing 3.10: getTranslation implementation

In practice, the getRotation method has been implemented in a single-liner,
but the operations have been decomposed for greater expressive power in the
listing 3.11. We report the operations in table 3.2 in which all values are in binary,
and we see that we obtain the desired results

float getRotation(uint b1b2, uint b1, uint b2)
{

uint a = (b1b2 ^ 0x2);
uint b = (a | 0x1);
uint c = (b1 ^ b2);
return (b * c) * M_PI * 0.5;

}

Listing 3.11: getTranslation implementation

A final optimization that can be implemented regards the ‘rotate(theta, trans-
lation)‘ method. In its naive variant, it can be defined as shown in listing 3.12

Nevertheless, trigonometric functions are very expensive, and this method is
eventually called many times per key, for each key, at each frame. But one can
notice that all of the angles are multiples of π/2, so their their cosine and sine are
in {−1, 0, 1} and the rotation can be emulated by carefully chosen sign inversions

44

Table 3.2: Computing the angle of rotation from binary representation of current branching. The
final result needs to be multiplied by π/2

b1b2 b1 b2 a = b1b2⊕ 10 b = a ∨ 01 c = b1⊕ b2 r = b× c r10
00 0 0 10 11 0 00 0
01 0 1 10 11 1 11 3
10 1 0 00 01 1 01 1
11 1 1 01 01 0 00 0

on the values of the translation, as we did in our code.

vec2 rotate(float theta, vec2 tr)
{

vec2 r;
float cosT = cos(theta), sinT = sin(theta);
r.x = cosT * tr.x - sinT * tr.y;
r.y = sinT * tr.x + cosT * tr.y;
return r;

}

Listing 3.12: Naive implementation of the rotate function

3.3 Contributions: Neighbour LoD Check, two other approaches

In section 2.3.2, we listed the three approaches that we developed for the neighbour
LoD check, but only detailed the one used in the final implementation. In this
section we will explain the remaining two and discuss our final choice.

3.3.1 Neighbour Key Recovering

As its name suggests, Neighbour Key Recovering consists in recovering
the key of the relevant neighbour, and use it to map the leaf-space hypotenuse
[(1, 0), (0, 1)] to object-space, as we usually do in our Compute Pass. Nevertheless,
finding the adjacent key from the current key is not trivial, as the pattern appear-
ing in a subdivided quadtree shows no obvious relationship between two adjacent
leaves key, as depicted on figure 3.3

As the keys are built recursively, the first approach has been to decode the
keys in a recursive routine, during which we treat the last branching of the key.
More precisely, our recursive routine N is composed of two recursive subroutine
Xn and Yn that respectively compute the key of the X-Neighbour and the Y-
Neighbour, as well as a deterministic subroutine Out that is called when the
computations indicate that the neighbour key is in an adjacent root triangle (cf
figure 2.8 page 22). Let us define a sub-key Ai from an original key A0 of level n

45

Figure 3.3: Extract from a uniformly subdivided quadtree at level 3

as
Ai = qnqn−1qn−2...qi−2qi−1qi where qk ∈ {0, 1, 2, 3}

We obtain

N(Ai) = (N(Ai−1), N(qi))

Here, N(qi) always returns a base4 value deterministically, but N(Ai−1) can either
return the resulting key directly or continue in a recursive manner, depending on
the subroutine the algorithm is currently in and the value of qi. Note that the keys
are considered as a string of base4 elements, and that every operation is computed
in base4 (e.g. 1134+14 = 1204). The three subroutines are defined in algorithm 5.

To give an example of execution, let us say that we look for the Y-Neighbour of
A0 = 312. We directly call the subroutine Yn on the key and the recursive routine
will execute as follow:

Yn(A0) = Yn(312)

= (Xn(31), 1)

= ((Yn(3), 2), 1)

= (((2), 2), 1)

= 221

Looking at figure 3.3, we see that 221 is indeed the Y-Neighbour of 312. From
this key we can recover the object-space position of the relevant neighbour hy-
potenuse. Since recursion is not achievable on the GPU, I broke down the subrou-
tines and merged them in a function that follows the same steps and evaluations
but in a state machine manner, the next state being dictated by the treated branch-

46

Algorithm 5 Neighbour key recursive algorithm
1: function Xn(A0, Ai)
2: if Ai has length 1 then
3: switch BranchingID do
4: case 0 return 1
5: case 1 return Out(A0)
6: case 2 return 3
7: case 3 return Out(A0)
8: else
9: qi ← last branching of Ai

10: switch qi do
11: case 0 or 2 return Ai + 14
12: case 1 return (Yn(A0, Ai−1), 2)
13: case 3 return (Xn(A0, Ai−1), 0)
14: function Yn(A0, Ai)
15: if Ai has length 1 then
16: switch BranchingID do
17: case 0 return Out(A0)
18: case 1 return 0
19: case 2 return Out(A0)
20: case 3 return 2
21: else
22: qi ← last branching of Ai

23: switch qi do
24: case 1 or 3 return Ai − 14
25: case 0 return (Yn(A0, Ai−1), 3)
26: case 2 return (Xn(A0, Ai−1), 1)
27: function Out(Ai)
28: for all Branching qi in Ai do <text>
29: qi ← 34 − qi

return Ai

47

ing. This method has the advantage of tearing down the isolation constraint of
our subdivision, since we can now recover all the informations about neighbour-
ing nodes by first computing their key. This could be very advantageous in the
future (e.g. when optimizing for textures), but seems a bit overkill for the original
purpose.

3.3.2 Pre-Mapping Reflect

Recall that the reflection method consists in reflecting the parent hypotenuse in a
given space to recover the coordinates in object-space of the target neighbour hy-
potenuse in order to compute the associated LoD. By then comparing the resulting
LoD with the level of the currently treated leaf, we can detect T-Junctions.

Contrary to the Post-Mapping Reflect, the Pre-Mapping Reflect con-
sists in computing the position of the hypotenuse of interest in unit-space, and
from unit-space mapping it to object-space using the key of the currently treated
leaf. Depending on the relative position as a child, we choose one of two easily
computed reflected hypotenuse and we then map these position to object-space
as we would have mapped the current node’s parent, and obtain the coordinates
from which we can compute the LoD. As with the two previously presented meth-
ods, if the neighbour lies on an adjacent root triangle, we compute its key and
map the unit triangle hypotenuse to world space. The hypotenuses of interest are
pictured in orange in fig.2.10 (page 24) and the Pre-Mapping Reflect can be
implemented with the following approach, where we call Atarget the key used to
map the Unit-Space reflected hypotenuse Hu for the current leaf designated by
key Aleaf :

Algorithm 6 Pre-Mapping Reflect
1: if the desired neighbour is outside the current root triangle then
2: Atarget = Out(Anode)
3: Hu = [(1, 0), (0, 1)]
4: else
5: Atarget = Parent(Anode)
6: if current node is on X Border of its parent (child 2 or 3) then
7: Hu = [(1, 0), (0,−1)]
8: else
9: Hu = [(−1, 0), (0, 1)]

10: Map Hu to object-space using Atarget

48

4
Results

In this section, we will present a few visual results yielded by our implementations.
We will not be able to produce any kind of quantitative measures unfortunately,
as I was not able to have a satisfying implementation on Tessellation Hardware
that would make comparison relevant.

4.1 Distance Based Pipeline

Figure 4.1: Top view of the subdivided terrain. The different colors represent different LoDs, and
the morph zones are visible at transition between two grid levels inside the same LoD.

49

(a) Starting Grid (b) Low LoD

(c) Medium LoD (d) High LoD

(e) High LoD with displacement

Figure 4.2: Distance-Based Subdivision on a triangle grid. The different colors represent different
LoDs.

4.2 Screen-Scape Pipeline

50

(a) Before (b) After

Figure 4.3: Effect of our triangulation on a triangle mesh

(a) Without T-Junction removal (b) With T-Junction removal

Figure 4.4: Visual result of our T-Junction removal algorithms. In shades of blue: LoD level. In
red: triangles morphed in the T-Junction removal

51

(a) No subdivision (b) Screen-Space subdivision

Figure 4.5: Close-up on a detail of BigGuy. Notice the great reduction in triangle size variance
in the subdivided mesh. In shades of blue: LoD level. In red: triangles morphed in the T-Junction
removal

(a) With culling (b) Without culling

Figure 4.6: Top view of a 2D grid subdivided with the screen-space pipeline. We see in the pic-
ture without culling the problem happening at the near plane of the projection matrix

52

(a) LoD factor 1 (b) LoD factor 3

(c) LoD factor 5 (d) LoD factor 5

Figure 4.7: Showcase of our screen-space pipeline, at the same distance with 4 different LoD
factors. In shades of blue: LoD level. In red: triangles morphed in the T-Junction removal

53

5
Conclusions

In this thesis, we took as starting point the work proposed in [Dupuy et al., 2014],
and iterated from this implementation, each time straying further away from both
the traditional quadtree usage and the initial implementation of Linear Quadtrees,
in the pursuit of a complete rendering pipeline that can seamlessly render subdi-
vision surfaces from any kind of mesh.

We started by using a subdivision criterion often used along quadtrees for ter-
rain rendering: the distance from polygon to camera position. Around this LoD
function we build the first prototype of our pipeline, which worked well, but needed
many improvements from an architectural point of view. We also realized that a
distance metric wasn’t ideal in all cases, and decided to try a new approach.

Once our goal was set on using screen-space metrics to define the level of detail,
we were confronted with the major constraint of keeping the tree restricted. The
solution found required a drastic change in our mesh processing, as the program
performs the triangulation of all mesh polygons. Along with this new insight, we
rebuild most of the program structure to be as flexible and easy to maintain as
possible.

Finally, we managed to obtain a few qualitative results, yielding very clean
subdivided meshes, proving that our subdivision scheme does not yield any kind
of cracks.

5.1 Future Work

A major evolution to this project that could increase its impact on the industry
would be to implement the Catmull Clark Subdivision Surfaces. This

54

would join together the tessellation used in offline and real-time pipelines, allowing
the use of the same assets for a movie and a video-game (for example).

An idea that could be worth investigating resides in using the tessellation hard-
ware to perform the last few subdivision level, taking advantage of both our adapt-
ability and of the performance of the tessellator.

The ROAM article [Duchaineu et al., 1999] proposes a subdivision scheme that
is close to the one we chose, while proposing what would be intermediate levels
between two levels of our implementation. This could offer a more progressive
tessellation.

To optimize the memory footprint of our implementation, we could modify the
buffer implementation such that the size of the SSBOs containing the quadtree
keys is dynamically updated.

From a commercial point of view, to maximize the spread of real-time tessel-
lation, this implementation could be implemented as a feature in the Unity3D
game engine.

Finally, as we triangulate the control mesh polygon, it would be possible to
first adapt our program to run on meshes containing both quad and triangles, and
in a second time, to define more triangulations for less commonly used polygons
(hexagons, octogons, etc...)

5.2 Personal Insight

This project has been extremely fulfilling for me. My understanding of OpenGL,
and in a broader sense, of the mechanisms implemented on a graphics card, has
increased immensely.

It also gave me the chance to dive in the subject of Tessellation that I previ-
ously briefly discovered during the project Procedural Terrain Rendering for the
Introduction to Computer graphics course at E.P.F.L.. With retrospect, I real-
ize I should have adopted a more scientific work methodology, by implementing
aside my work existing algorithm to be able to produce quantitative performance
comparisons. But the thrive to make more advanced and efficient algorithms work
well, and the time required to implement from scratch all of the technologies pre-
sented in this thesis, didn’t leave me much breathing room to wonder what kind
of existing algorithm I could implement, for the sole purpose of comparison.

From a professional standpoint, working at Unity Labs has truly been a treat,
and I cannot thank the team of Grenoble enough for their support, patience and
encouragement. Their enthusiasm, passion, scientific culture and curiosity are
greatly responsible for my decision to pursue a career in Graphics research.

55

References

[D3D, 2009] (2009). Direct3D 11 Features. Microsoft.

[Brainerd et al., 2016] Brainerd, W., Foley, T., Kraemer, M., Moreton, H., &
Nießner, M. (2016). Efficient gpu rendering of subdivision surfaces using
adaptive quadtrees. ACM Transactions on Graphics (TOG), 35(4), 113.

[Cantlay, 2011] Cantlay, I. (2011). Directx 11 terrain tessellation. Nvidia whitepa-
per, 8(11).

[Carpenter, 1984] Carpenter, L. (1984). The a-buffer, an antialiased hidden sur-
face method. ACM Siggraph Computer Graphics, 18(3), 103–108.

[Catmull, 1974] Catmull, E. (1974). A subdivision algorithm for computer dis-
play of curved surfaces. Technical report, UTAH UNIV SALT LAKE CITY
SCHOOL OF COMPUTING.

[Duchaineu et al., 1999] Duchaineu et al. (1999). Roaming terrain: Real-time
optimally adapting meshes. Proceedings of the SIGGRAPH ‘99, Denver,
USA, (pp. 56–67).

[Dupuy et al., 2014] Dupuy, J., Iehl, J.-C., & Poulin, P. (2014). Quadtrees on the
gpu. GPU Pro5: Advanced Rendering Techniques, 5, 439–450.

[Gargantini, 1982] Gargantini, I. (1982). An effective way to represent quadtrees.
Communications of the ACM, 25(12), 905–910.

[Lindstrom et al., 1996] Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L. F.,
Faust, N., & Turner, G. A. (1996). Real-time, continuous level of detail
rendering of height fields. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques (pp. 109–118).: ACM.

[Nießner et al., 2016] Nießner, M., Keinert, B., Fisher, M., Stamminger, M., Loop,
C., & Schäfer, H. (2016). Real-time rendering techniques with hardware
tessellation. In Computer Graphics Forum, volume 35 (pp. 113–137).: Wiley
Online Library.

[Pajarola, 2002] Pajarola, R. (2002). Overview of quadtree-based terrain triangu-
lation and visualization.

[Patney & Owens, 2008] Patney, A. & Owens, J. D. (2008). Real-time reyes-style
adaptive surface subdivision. In ACM Transactions on Graphics (TOG),
volume 27 (pp. 143).: ACM.

[Riccio, 2012] Riccio, C. (2012). Southern islands in deep dive. SIGGRAPH Tech
Talk.

56

[Segal & Akeley, 2017] Segal & Akeley (2017). The OpenGL Graphics System: A
Specification (version 4.5). Khronos Group.

[Strugar, 2009] Strugar, F. (2009). Continuous distance-dependent level of detail
for rendering heightmaps. Journal of graphics, GPU, and game tools, 14(4),
57–74.

57

	Abstract
	Introduction
	Quadtrees on the GPU
	Introduction
	Surface Representation
	Quadtrees
	Notations

	Previous Work: Linear Quadtree
	Data-structure description and update
	Mapping from leaf-space to quadtree-space
	From quadtree-space to object-space, using quadtrees for meshes

	Contribution: Adapting Linear Quadtrees to Triangles
	New tessellation scheme, same data-structure
	Mapping from leaf-space to quadtree-space
	Mapping from quadtree-space to object-space
	Conclusion

	Adaptive Surface Subdivision - LoD and T-Junctions
	Introduction
	Distance Based Approach
	Previous work: Distance Based LoD
	Distance Based T-Junction Removal
	Limitations of the Distance Based Approach

	Contribution: Screen-Space Approach
	Screen-Space LoD
	Screen-Space T-Junction Removal
	Limitations of Screen-Space LoD

	Implementation Details
	Contribution: Pipeline Structure
	Notations and definitions
	First Approach: 3 passes, 1 array of command buffer
	Second Approach: 2 passes & 1 copy pass

	Key Data-Structure
	Format Description
	Contribution: Key Initialization
	Contribution: Key Decoding

	Contributions: Neighbour LoD Check, two other approaches
	Neighbour Key Recovering
	Pre-Mapping Reflect

	Results
	Distance Based Pipeline
	Screen-Scape Pipeline

	Conclusions
	Future Work
	Personal Insight

	References

