
Flirting with Teethaster

Jad-Nicolas Khoury ∗

CSS440 - Advanced Computer Graphics

Figure 1: Final Render, 50M photons per iteration, 12 iterations, g=0.874

Abstract

This report will describe, explain and prove the implemented al-
gorithms for the final project of the Advanced Computer Graphics
course given at EPFL by W. Jakob

Keywords: Photon mapping, global illumination, homogeneous
mediums, Beam Radiance Estimate

Figure 2: Inspiration image, taken from an online video

∗e-mail:jad-nicolas.khoury@epfl.ch

1 Objectives

This project aimed at rendering an underwater scene with realis-
tic anisotropic homogeneous medium simulation. The inspirational
image shows beautiful caustics projected on the sea-floor as well as
sea water as participating medium (cF fig.2). The features imple-
mented for this scene are:

• Probabilistic Progressive Photon Mapping

• Environment Map (a.k.a. Image Based Lightning)

• Texturing

• Normal Mapping

• Mesh Design / Physical Simulation

As Photon Mapping is quite problematic with microfacet surfaces,
even more when we have 100% indirect illumination, we will not
discuss this model in this report, and therefore consider that any
surface is either specular (dielectric or mirror) or diffuse.

2 Progressive Photon Mapping

2.1 Photon Mapping Implementation

As 100% of the illumination in the scene is indirect, most non-
metropolized path tracing algorithms fail. As Photon Mapping is



ALGORITHM 1: StoreDiffusePhotons
Input: A reference to the incoming Ray (ray) and its current

RGB power (power), a 2D sample (sBSDF ), a 1D sample
(sroulette), and an intersection (its)

Output: A boolean (roulette shot) set to true if the Russian
Roulette shot, and the updated ray and power

sampledColor = sample BSDF at intersection point;
p roulette = min(0.99, max(sampledColor));
if sroulette > p roulette then

roulette shot = TRUE;
else

roulette shot = FALSE;
power∗ = sampledColor/p roulette;
photonMap.push(new Photon(its.position, −ray.d,
power));

end
ray = sampled direction from BSDF sampling;
return roulette shot

the go-to algorithm when aiming at rendering caustics, I first im-
plemented a standard version of this global illumination algorithm,
using both nn-search and maximum radii with the help of [Jensen
et al. 2001]. I modified a little bit the preprocessing step in charge of
filling the photon map in order to isolate some key subroutines and
get an almost integrator-looking function. We therefore distinguish
two subroutines:

• First, one that serves as photon storing subroutine, described
in alg.1

• Second, an almost similar algorithm, depicted in alg.2 that
modifies the ray and power when hitting a specular surface.
The only difference compared to the previous subroutine is
that this one doesn’t store any photons.

The preprocess algorithm in charge of preparing the photon map
becomes very simple, as shown in algorithm 3.
We compare the results of this algorithm from the result of standard
path tracing (without M.I.S.) in fig 4, with parameters tweaked such
that the rendering time (preprocessing included) is approximately
the same. The first observation is that for some reasons, the image
rendered using Photon Mapping is brighter, but also less noisy.

2.2 Probabilistic Progressive Photon Mapping Imple-
mentation

Given the size of the rendered scene, and the natural bias of ”pure”
photon mapping, the implemenatation of a progressive version has
been required. I implemented the Probabilistic PPM as proposed in
[Knaus and Zwicker 2011]. My implementation did not particularly
innovate with regard to the proposed algorithm in the aforemen-
tioned paper, appart from the part that allowed direct visualization
of the progress in Nori, which will not be detailed here. Fig. 5
compares the result of the Progressive Photon Mapping algorithm
with standard path tracing for the same render time. The parameters
have been tweaked such that the needed time to render 25 iterations
is approximately the same time needed by the Photon Mapping ref-
erence.

3 Textures and Normal Mapping

3.1 Textures

Implementing texture is fairly easy, and just needed the implemen-
tation of a struct in the BSDF header file. To load external image

ALGORITHM 2: SpecularReflection
Input: A reference to the incoming Ray (ray) and its current

RGB power (power), a 2D sample (sBSDF ), a 1D sample
(sroulette), and an intersection (its)

Output: A boolean (roulette shot) set to true if the Russian
Roulette shot, and the updated ray and power

sampledColor = sample BSDF at intersection point;
p roulette = min(0.99, max(sampledColor));
if sroulette > p roulette then

roulette shot = TRUE;
else

roulette shot = FALSE;
power∗ = sampledColor/p roulette;

end
ray = sampled direction from BSDF sampling;
return roulette shot

files, I imported the stb image library by simply copying the header
library in the include folder. Reading the texture and converting
from the unsigned char array to color are all standard algorithms de-
tailed with stb image, and the only addition to these standard func-
tion has been the handling of tiled uv coordinates. Indeed, when
exporting meshes with uv coordinates, some uv can be outside the
[0, 1] range, which is problematic when converting from uv coor-
dinates to pixel coordinates. The solution has been to simply add
or substract 1.0 from each coordinates until it’s in the right range.
Then, when sampling or evaluating a diffuse BSDF, we then simply
pass the uv coordinates of the intersection to the sample/eval func-
tion, which will then use the texture to read the albedo at the current
position, if a texture file has been assigned to the BSDF.

3.2 Normal Mapping

Normal Mapping relies on the same Texture struct. Nevertheless,
this texture is not used in the BSDF itself but rather in the accel
class, when searching and defining an intersection. We map the uv
coordinates of the final intersection point as before, but this time we
use the color sampled from the texture to modify the normal of the
intersection point. First, as the color has channels between 0 and 1
but the normal has coordinates between -1 and 1 (after normaliza-
tion), we map the sampled color to [−1, 1] by simply multiplying
by 2 and substracting 1 and normalizing the result. We then use the
original normal of the intersection to put the new normal in world
coordinates, and then use this last result to define the shading frame
of the intersection point.

3.3 Results

Figure 6 shows the result of applying the texture, the normal map,
and then both to our shark model. These images have been rendered
using a simple Path tracer. Unfortunately, given the size of the final
scene and the way Photon Mapping works, the texture are not very
visible on the final rendering.

4 Volumetric Photon Mapping and Beam Ra-
diance Estimate

4.1 Volumetric Photon Tracing

To complete our preprocess algorithm, we have to create a sub-
routine to store volumetric photons like we did before for diffuse
ones, detailed in algo 4. This algorithm stores volumetric photon
while the sample distance allows it, and at the end of its execution,



ALGORITHM 3: Photon Tracing
Input: A pointer to the current scene (scene)
Output: A filled photon map
photonMap = new empty photon map;
roulette shot = FALSE;
ray = empty Ray;
power = empty Color;
its = empty Intersection;
while photonMap is not full do

scene.emitPhoton(&ray, &power);
power = power/nb photon;
roulette shot = FALSE;
while roulette shot == FALSE do

scene.rayIntersect(ray, its);
if no intersection is found then

break;
end
if BSDF at intersection is diffuse then

roulette shot = StoreDiffusePhoton(ray, power,
new 2D sample, new 1D sample, its)

else
roulette shot = SpecularReflection(ray, power,

new 2D sample, new 1D sample, its)
end

end
end
build photonMap’s KDTree

the ray points toward the next surface interaction (if appropriate).
The system is then ready for the StoreDiffusePhoton that can be
used right after, as the power has been scaled and the ray has been
appropriately scattered. The only modification then needed in the
preprocess algorithm is to call this subroutine when the ray is cur-
rently in the medium.
Also note that I don’t force the size of the volumetric map, i.e. I just
record photons as they scatter and intersect surfaces, until I reach
the global phonton number.

4.2 The Medium Class

This class implement everything needed for coloured anisotropic
homogeneous mediums.
First, the Henyey Greenstein phase function, than can be sampled
or evaluated, and which exactness has been proven with a warptest,
see fig. 3.
Second, a function that allows to sample a distance in function of
the parameters of the medium, and to compute its pdf. As we imple-
ment coloured mediums, we have to adapt the standard functions:
given two random 1D samples ζ1 and ζ2, we compute the sampled
distance as:

i = floor(3 ∗ ζ1) (1)

t = − ln(1− ζ2)/σt[i] (2)

and the corresponding pdf as the average of the standard pdf equa-
tion across the 3 channels

pdft =

∑2
n=0 σt[i] ∗ exp(−t ∗ σt[i])

3
(3)

4.3 Beam Radiance Estimate

The implementation of the Beam Radiance Estimate has not re-
quired any innovation with regard to what is described in its pa-

ALGORITHM 4: StoreVolPhotons
Input: A pointer to the current scene (scene), to the current

sampler (sampler), to the current Ray (ray) and power
(power)

Output: nothing
t, pdf t = medium.sampleDistance(new 2D sample);
its = new empty Intersection;
wi, wo = new 3d vectors;
hitSurface = scene.rayIntersect(ray, its);
maxt = distance from ray origin to intersection;
while t < maxt do

if scene doesn’t contain ray(t) then
break;

end
ray.origin = ray(t);
power *= medium.sigmaS ∗ medium.Transmittance(t) / pdft;
volPhotonMap.push(new Photon(ray.origin, −ray.d,
power));
wi = ray.d;
wo = medium.samplePhaseFunction(wi, next 2D sample);
ray.d = wo;
hitSurface = scene.rayIntersect(ray, its);
t, pdf t = medium.sampleDistance(new 2D sample);
maxt = distance from ray origin to intersection;

end

per [Jarosz et al. 2008]. It has been nevertheless extremely hard to
debug because of the number of parts it connects:

• The Volumetric Photon Map

• The BBH Data Structure

• The Phase Function sampling and evaluation

• The distance computation and pdf

• The Transmittance equation

As I don’t have time to implement another kind of medium par-
ticipation just for the sake of comparison, this report will instead
show the different results we obtain when we play around with the
available parameters.

• fig. 7 shows the effect of scaling σs and σt, when they are
used as float

• fig. 8 shows the effect of the coloured implementation

• fig. 9 shows the effect of changing the phase fonction’s g

5 Environment Map

The implementation of Image Based Lightning has been inspired
by the implementation proposed by PBRT ([Pharr et al. 2016]). We
used importance sampling but unfortunately not mipmapping. As
a result, fig. ¡envmap¿ showing the result of my implementation
shows extremely pixelated regions in the background.
As the envmap I used in the final rendering was not HDR and that I
needed a LOT of incoming radiance, I boosted the high luminance
regions with a huge factor both when constructing the DPDF used
for importance sampling and when retrieving the colour when emit-
ting photon.



Figure 3: Warptest of the Henyey-Greenstein phase function. Top:
g = 0.1, Bottom: g = 0.9

6 Mesh simulation, design

The ocean surface has been created from a big triangle mesh on
which I applied the Ocean Modifier of Blender, so I don’t know if
that qualifies as mesh design or simulation.
The shark mesh and its textures are available free on CGTrader:
https://www.cgtrader.com/free-3d-models/animals/fish/

great-white-shark-e945a4e090cd71acbf4cfcc6ff54ad9c/

The Human and its texture has been provided by a friend (Clian
Millet) who works in modelisation and who uses it as low poly test
human. Since the human sits above the water, I didn’t need high
details since the few patches of transparence of the water surface
only show a highly deformed image of him.
The surf has been designed on Maya by the same friend.

7 Conclusion

After spending an immense amount of time implementing PPM and
BRE, everything worked in small text scene (often Cornell Boxes),
and I expected the final rendering to naturally show caustics on the
floor and ”God Rays” under water, but unfortunately it was not
the case. I tried overwriting the phase sampling function to always
return the incoming ray and therefore not to deviate the light ray
at scattering event, but it didn’t change anything. I conclude from
this experiment that the absence of sharp caustics comes from
the ocean mesh rather than my algorithms. I would have loved
to spend more time tweaking and testing different scene setup,
but since my whole project would be nothing without the B.R.E.,
making it work was my only objective during two long weeks, and
by the time I debugged it, I barerly had the time to put my scene
together on blender and launch the render.

References

JAROSZ, W., ZWICKER, M., AND JENSEN, H. W. 2008. The
beam radiance estimate for volumetric photon mapping. In ACM
SIGGRAPH 2008 classes, ACM, 3.

JENSEN, H. W., CHRISTENSEN, P. H., AND SUYKENS, F. 2001.
A practical guide to global illumination using photon mapping.
ACM SIGGRAPH 2001 Course Notes CD-ROM.

KNAUS, C., AND ZWICKER, M. 2011. Progressive photon map-
ping: A probabilistic approach. ACM Transactions on Graphics
(TOG) 30, 3, 25.

PHARR, M., JAKOB, W., AND HUMPHREYS, G. 2016. Physi-
cally based rendering: From theory to implementation. Morgan
Kaufmann.

https://www.cgtrader.com/free-3d-models/animals/fish/great-white-shark-e945a4e090cd71acbf4cfcc6ff54ad9c/
https://www.cgtrader.com/free-3d-models/animals/fish/great-white-shark-e945a4e090cd71acbf4cfcc6ff54ad9c/


Figure 4: Left: path tracing, right: PM with 50M photons, k = 300, both roughly 5min. Please ignore the dimmed emmiter mesh on the right.

Figure 5: Left: path tracing, right: PPM with 25 iterations, 5M photons / iteration, k = 100, both roughly 5min.

Figure 6: From top-left to bottom-right: no texture, normal map, texture, both



Figure 7: B.R.E. - Comparison of the result with σs = σt = 0.5, 1.0, 2.0 (from left to right), 10M photons, k = 300, g=0

Figure 8: B.R.E. - Comparison of the result with σs = (1, 1, 1), (0, 0, 1), (0, 0.5, 0.8) (from left to right).
10M photons, k = 300, g=0, σt = (1, 1, 1)

Figure 9: B.R.E. - Comparison of the result with g = 0.0, 0.5, 0.99 (from left to right).
10M photons, k = 300, σt = (1, 1, 1), σs = (0, 0.5, 0.8)


